Traditionally, destructive sampling and analysis are used to determine the fate, kinetics and effects of exogenous materials in the body. Minimally invasive confocal and multiphoton microscopy (MPM) in 3D space over in time to deep tissue depths has enabled us to quantify endogenous fluorescent species in the body as well as exogenous fluorescent molecules, cells and nanoparticles that have been administered into the body and/or are applied to the skin, kidney and liver ex vivo and in vivo. Of particular importance has been the ability to get specificity in drug, metabolite and endogenous solute measurement in tissues in vivo by using specific spectral excitation and emission wavelengths, the use of fluorescence lifetime and the measurement of fluorescence anisotropy. We have applied MPM to characterise physiologically based pharmacokinetics of solutes, mesenchymal stem cells and nanoparticles in various organs. More recently, we have used MPM to examine stem cell and nanoparticle – tissue interactions directly in acute liver and kidney injury models, tumor models and inflammatory models. MPM has also been used to measure changes in the redox state of cells, as well the use of photochemical probes to measure adverse biochemical events such as the formation of reactive oxygen species. Sun-induced skin damage, with its sequelae of photoaging, actinic keratosis and various skin cancers is a particular issue for many of us in subtropical and temperate climates. Our group has therefore also used MPM to quantify the metabolic changes seen in melanoma lesions, the safety of nanoparticle sunscreens, whose use may prevent these lesions, and to aid in the mechanistic and regulatory evaluation of topical product efficacy, bioequivalence and safety. In conclusion, MPM fluorescence lifetime imaging microscopy (FLIM) is a promising technology to aid in product characterization and development as well as in the translational diagnosis of skin related pathologies in the clinic.
Hypochlorous acid (HOCl) plays a vital role in physiological events and diseases. During hepatic ischemia-reperfusion (I/R) injury, HOCl is generated by neutrophils and diffuses into hepatocytes, causing oxidant stress-mediated injury. Although many probes have been developed to detect HOCl, most were difficult to be distinguished from endogenous fluorophores in intravital imaging and only can be employed under one-photon microscopy. A novel iridium(III) complex-based ferrocene dual-signaling chemosensor (Ir-Fc) was designed and synthesized. Ir-Fc exhibited a strong positive fluorescent response only in the presence of HOCl, whereas negligible fluorescent signals were observed upon the additions of other reactive oxygen/nitrogen species and metal ions. There was a good linear relationship between probe responsive fluorescent intensity and HOCl concentration. Ir-Fc was then intravenously injected into BALB/c mice at the final concentration of 50 μM and the mouse livers were imaged using multiphoton microscopy (MPM). In the I/R liver, reduced autofluorescence was detected by MPM, indicating the hepatocyte necrosis. Remarkable enhancement of red fluorescence was observed in hepatocytes with decreased autofluorescence, indicating the reaction of Ir-Fc with endogenous HOCl molecules. The cellular concentration of HOCl was first calculated based on the intensity of MPM images. No obvious toxic effects were observed in histological examination of major organs after Ir-Fc injection. In summary, Ir-Fc has low cytotoxicity, high specificity to HOCl, and rapid “off-on” fluorescence. It is suitable for dynamic quantitatively monitoring HOCl generation using MPM at the cellular level. This technique can be readily extended to examination of liver diseases and injury.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.