The development of a simple particle redistribution model for estimating the effect on surface obscuration after particle shed from a neighboring surface during random vibration is discussed. The model uses both spherical and elliptical particles and existing failure data of glass spheres on a metal surface to estimate the critical body force to cause the particles to release from the surface. The resulting obscuration from shedding particles on the shedding surface can then be added to the receiving surface. The model assumes that the force due to gravity exceeds the buoyancy force from venting. Because the redistribution analysis shows that particles 80 µm and larger will shed, and particles 60 µm and larger are verifiable using Visually Clean-II (VC-II) conditions, highly reflective surfaces cleaned to a VC-II level will pose little threat to neighboring surfaces from redistribution at 6-g quasi-static loading.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.