In this paper, a neural network time delay prediction method based on phase space reconstruction is presented. This method reconstructs one-dimensional chaotic time series in phase space according to the internal law through phase space reconstruction, and uses BP neural network algorithm to predict the time delay. Simulation experiments show that this method has good prediction performance.
A time delay prediction method of train network based on wireless transmission is proposed. EMD is used to decompose the time delay series. The decomposed components with large sample entropy are DWT to form new components, in order to reduce the complexity of prediction. The components with similar sample entropy are combined into new components to reduce the amount of model calculation. Finally, each data component is predicted by particle swarm optimization LSSVM model. The simulation results show that the proposed method has high prediction accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.