KEYWORDS: Scanning electron microscopy, Neural networks, Line width roughness, Denoising, Line edge roughness, Machine learning, Monte Carlo methods, Computer simulations, Convolutional neural networks, Wavelets
We propose the use of deep supervised learning for the estimation of line edge roughness (LER) and line width roughness (LWR) in low-dose scanning electron microscope (SEM) images. We simulate a supervised learning dataset of 100,800 SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. We also devise two separate deep convolutional neural networks called SEMNet and EDGENet, each of which has 17 convolutional layers, 16 batch normalization layers, and 16 dropout layers. SEMNet performs the Poisson denoising of SEM images, and it is trained with a dataset of simulated noisy-original SEM image pairs. EDGENet directly estimates the edge geometries from noisy SEM images, and it is trained with a dataset of simulated noisy SEM image-edge array pairs. SEMNet achieved considerable improvements in peak signal-to-noise ratio as well as the best LER/LWR estimation accuracy compared with standard image denoisers. EDGENet offers excellent LER and LWR estimation as well as roughness spectrum estimation.
We propose a deep convolutional neural network named EDGENet to estimate rough line edge positions in low-dose scanning electron microscope (SEM) images corrupted by Poisson noise, Gaussian blur, edge effects and other instrument errors and apply our approach to the estimation of line edge roughness (LER) and line width roughness (LWR). Our method uses a supervised learning dataset of 100800 input-output pairs of simulated noisy SEM rough line images with true edge positions. The edges were constructed by the Thorsos method and have an underlying Palasantzas spectral model. The simulated SEM images were created using the ARTIMAGEN library developed at the National Institute of Standards and Technology. The convolutional neural network EDGENet consists of 17 convolutional, 16 batch-normalization layers and 16 dropout layers and offers excellent LER and LWR estimation as well as roughness spectrum estimation.
We use deep supervised learning for the Poisson denoising of low-dose scanning electron microscope (SEM) images as a step in the estimation of line edge roughness (LER) and line width roughness (LWR). Our denoising algorithm applies a deep convolutional neural network called SEMNet with 17 convolutional, 16 batch-normalization and 16 dropout layers to noisy images. We trained and tested SEMNet with a dataset of 100800 simulated SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. SEMNet achieved considerable improvements in peak signal-to-noise ratio (PSNR) as well as the best LER/LWR estimation accuracy compared with standard image denoisers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.