Color normalization is one of the pre-processing steps employed by many deep learning-based algorithms used for aiding pathology diagnoses with whole-slide images. Due to variability in tissue type, specimen preparation, staining protocol, and scanner performance, whole-slide images acquired from different sources may exhibit pronounced color variability that hinders algorithms from executing effectively. In the literature, numerous methods have been proposed to colornormalize hematoxylin and eosin (H&E)-stained images. However, the objective of color normalization has not been colorimetrically defined or evaluated beyond visual comparison. In this study, a quantitative metric, color normality, was defined to evaluate the degree of color similarity between images involved in a color normalization process. The pixelwise spectral data of eight H&E-stained tissue slides were optically measured as the ground truth to test the Reinhard, Macenko, and Vahadane methods. Principal component analysis was conducted on the spectral data to derive a new color normalization method as the reference. Experiment results show that the H&E color gamut needs to be expressed with three components, but the widely used Macenko and Vahadane methods compressed the three-dimensional color gamut volume into a two-dimensional surface and reduced color gamut volumes by 40% or more. None of the color normalization methods could achieve a color normality of greater than 0.6174 when the image was not self-normalized.
The color rendering of whole-slide images (WSIs) depends on factors involving the sample, such as tissue type, preparation methods, staining type and staining protocol, as well as equipment, such as the WSI scanner, WSI viewer, and WSI display. Variations in any of these steps may change the color rendering and therefore affect the performance of pathologists in the interpretation of WSIs and the robustness of artificial intelligence algorithms. In the literature, color normalization techniques have been proposed to reduce the color variations. The purpose of this work is to develop an objective approach to characterizing color normalization methods used in digital pathology. We employed color normalization methods to normalize the color rendered by a WSI scanner and then compared the normalized color with the actual scan by that scanner. The normalization errors were evaluated on the pixel level using the CIE color difference ΔE metric that have been shown to correlate with visually perceived differences in human vision. A selected set of 310 patch images of breast tissues scanned by two scanners from the ICPR 2014 MITOS & ATYPIA contest was used. Images from one scanner were color normalized to match the color rendering of the other scanner. Four color normalization methods were compared – Macenko, Reinhard, Vahadane, and StainGAN. Experimental results show that average color differences between two scanners in terms of ΔE were reduced from 16.2 before normalization to the range of [13.7,16.9] after normalization for the Macenko, Reinhard, Vahadane methods, and to 8.3 for the StainGAN method. Apparently the StainGAN method is significantly superior to the other three methods in terms of the ΔE metric. As such, we demonstrated a quantitative method for objectively evaluating color normalization techniques. Future work is needed to explore the relationship of the color fidelity measure and the impact of color normalization on pathologist and AI performance in clinical tasks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.