In this work we describe the robotization and upgrade of the ESO 1m telescope located at La Silla Observatory. The ESO 1m telescope was the first telescope installed in La Silla, in 1966. It now hosts as a main instrument the FIber Dual EchellE Optical Spectrograph (FIDEOS), a high resolution spectrograph designed for precise Radial Velocity (RV) measurements on bright stars. In order to meet this project's requirements, the Telescope Control System (TCS) and some of its mechanical peripherals needed to be upgraded. The TCS was also upgraded into a modern and robust software running on a group of single board computers interacting together as a network with the CoolObs TCS developed by ObsTech. One of the particularities of the CoolObs TCS is that it allows to fuse the input signals of 2 encoders per axis in order to achieve high precision and resolution of the tracking with moderate cost encoders. One encoder is installed on axis at the telescope and the other on axis at the motor. The TCS was also integrated with the FIDEOS instrument system so that all the system can be controlled through the same remote user interface. Our modern TCS unit allows the user to run observations remotely through a secured internet web interface, minimizing the need of an on-site observer and opening a new age in robotic astronomy for the ESO 1m telescope.
FIDEOS (FIbre Dual Echelle Optical Spectrograph) is a fibre-fed bench-mounted high-resolution echelle spec- trograph for the 1-m telescope at ESO in La Silla, Chile. It is based on a 44.41 lines/mm 70° blaze angle
echelle grating in quasi-Littrow mode, providing spectral resolution of R ~ 42 000, covering the spectral range from 400 nm to 680 nm. The detector is a 2k×2k CCD with 15 μm pixels. The spectrograph will be fed by two 50
µm core diameter fibres for the astronomical object and the simultaneous calibration lamp, respectively. Alter- natively, an iodine cell will be mounted on the telescope-spectrograph interface, providing a secondary spectral calibration source. In addition, the instrument will be mounted on a fixed optical-bench without movable parts rather than the CCD shutter and its enclosure will be thermally controlled to ensure opto-mechanical stability. Since the FIDEOS will deliver high resolution and spectral stability, it will be optimized for precision radial velocities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.