We demonstrate a procedure for immobilizing human immunoglobulin G (IgG) on an array of gold-coated silicon microcantilevers. The procedure employed protein A for the specific immobilization of human IgG on the gold surface. Protein A bound specifically to the gold-coated upper surface of the silicon microcantilever and had no interaction with the silicon surface. It binds to the constant Fc regions of human IgG keeping the antigen binding sites on the variable Fab region free to bind to antigens. Fluorescent microscopy was done to analyze qualitatively the biomolecular binding of human IgG using FITC labeled goat anti-human IgG. The immobilization densities of protein A and human IgG were 112±19 ng/cm2 and 629±23ng/cm2, as determined employing horse radish peroxidase (HRP) labeled biomolecules by 3, 3', 4, 4'-tetramethyl benzidine (TMB) substrate assay. The uniformness of the biomolecular coatings was further determined by atomic force microscopy (AFM). Surface plasmon resonance (SPR) was used to cross-validate the immobilization density of functional human IgG molecules immobilized on the gold surface w.r.t. that obtained by TMB substrate assay.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.