KEYWORDS: 3D acquisition, 3D image processing, Algorithms, Cognition, Detection and tracking algorithms, Image segmentation, 3D modeling, Intelligence systems, Visualization, 3D applications
This paper proposes a novel technique for 3D mesh segmentation using multiple 2D pose footprints. Such a problem has been targeted many times in the literature, but still requires further development especially in the area of automation. The proposed algorithm applies cognition theory and provides a generic technique to form a 3D bounding contour from a seed vertex on the 3D mesh. Forming the cutlines is done in both 2D and 3D spaces to enrich the available information for the search processes. The main advantage of this technique is the possibility to operate without any object-dependent parameters. The parameters that can be used will only be related to the used cognition theory and the seeds suggestion, which is another advantage as the algorithm can be generic to more than one theory of segmentation or to different criterion. The results are competitive against other algorithms, which use object-dependent or tuning parameters. This plus the autonomy and generality features, provides an efficient and usable approach for segmenting 3D meshes and at the same time to reduce the computation load.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.