The Aglite Lidar is a portable scanning lidar that can be quickly deployed at agricultural and other air quality study sites. The purpose of Aglite is to map the concentration of PM10 and PM2.5 in aerosol plumes from agricultural and other sources. Aglite uses a high-repetition rate low-pulse energy 3-wavelength YAG laser with photon-counting detection together with a steerable pointing mirror to measure aerosol concentration with high spatial and temporal resolution. Aglite has been used in field campaigns in Iowa, Utah and California. The instrument is described, and performance and lidar sensitivity data are presented. The value of the lidar in aerosol plume mapping is demonstrated, as is the ability to extract wind-speed information from the lidar data.
AGLITE is a multi-wavelength lidar developed for the Agricultural Research Service (ARS), United States Department of Agriculture (USDA) and its program on particle emissions from animal production facilities. The lidar transmitter is a 10 kHz pulsed NdYAG laser at 355, 532 and 1064 nm. We analyze lidar backscatter and extinction to extract aerosol physical properties. All-reflective optics and dichroic and interferometric filters permit all wavelengths to be measured simultaneously, day or night, using photon counting by MTs, an APD, and fast data acquisition. The lidar housing is a transportable trailer suitable for all-weather operation at any accessible site. We direct the laser and telescope FOVs to targets of interest in both azimuth and elevation. The lidar has been applied in atmospheric studies at a swine production farm in Iowa and a dairy in Utah. Prominent aerosol plumes emitted from the swine facility were measured as functions of temperature, turbulence, stability and the animal feed cycle. Particle samplers and turbulence detectors were used by colleagues specializing in
those fields. Lidar measurements also focused on air motion as seen by scans of the farm volume. The value of multi-wavelength, eye-safe lidars for agricultural aerosol measurements has been confirmed by the successful operation of AGLITE.
We report on the design, construction and operation of a new multiwavelength lidar developed for the Agricultural Research Service of the United States Department of Agriculture and its program on particle emissions from animal production facilities. The lidar incorporates a laser emitting simultaneous, pulsed Nd laser radiation at 355, 532 and 1064 nm at a PRF of 10 kHz. Lidar backscatter and extinction data are modeled to extract the aerosol information. All-reflective optics combined with dichroic and interferometric filters permit all the wavelength channels to be measured simultaneously, day or night, using photon counting by PMTs, an APD, and high speed scaling. The lidar is housed in a transportable trailer for all-weather operation at any accessible site. The laser beams are directed in both azimuth and elevation to targets of interest. We describe application of the lidar in a multidisciplinary atmospheric study at a swine production farm in Iowa. Aerosol plumes emitted from the hog barns were prominent phenomena, and their variations with temperature, turbulence, stability and feed cycle were studied, using arrays of particle samplers and turbulence detectors. Other lidar measurements focused on air motion as seen by long duration scans of the farm region. Successful operation of this lidar confirms the value of multiwavelength, eye-safe lidars for agricultural aerosol measurements.
This paper describes a project on automating the interpretation of cloud images recorded during several types of atmospheric observations: (1) dust clouds generated by controlled explosions, (2) chemical releases of infrared-active gases, and (3) lidar measurements of cloud altitude winds. This program began with a basic cloud tracking system for lidar comparisons, which has since been upgraded. We describe automated methods for tracking clouds of relatively constant shape, segmenting time-dependent clouds and plumes from scenic backgrounds, characterizing cloud and plume shapes, and measuring the speed and direction of cloud motion. Dust clouds were created by fireworks, releases of pressurized aerosols and by propane-driven blast tubes. Chemical clouds of organic vapors were created by evaporation or with pressurized balloon releases. Cloud imagery for particle releases was recorded primarily with a pair of visible video cameras. The chemical clouds were imaged with a high framing rate infrared camera in the 2.5 – 3.5 micron region. Current project goals include an end-to-end system for cloud warnings, wind measurement, and dispersion predictions in real time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.