Multi-wavelength (MWL) micro diffraction-based overlay (μDBO) is a prominent method for after-develop inspection (ADI) overlay measurements, which is favorable for accuracy and robustness. Continuous-bias DBO (cDBO) is expected to offer robustness improvements against stack variation, asymmetry, and imbalance. In this paper, dual-WL (DWL) cDBO profiles were evaluated to secure the advantages of both of MWL and cDBO applications. The metrics used to evaluate accuracy and robustness of ADI overlay measurements are residual, dynamic precision (DP), and wafer-to-wafer variation of the difference between ADI and after-etch inspection overlay. 70% of DWL profiles had improvements in their residual values comparing with their single-WL (SWL) constituents on Samsung R&D wafers in layer A. On layer B, the best DWL cDBO profiles showed around 5% improved residuals comparing with its SWL constituents. DWL cDBO showed around 30% averaged improved DP compared with SWL counterparts. DP improvements of MWL cDBO are following the expected DP improvements, based on the signal-to-noise ratio improvement with increasing number of signals. Residual improvement with increasing number of WLs is different from the DP improvement, and the best DWL residual improvement is higher than that of SWL measurements with noise reduction techniques applied. This shows that the residual improvement cannot be attributed to the increased number of acquisitions, and that it could be an innate advantage of MWL cDBO.
In order to meet the tightened lithography performance requirement for EUV systems, a good on-product focus control with accurate metrology is essential. In this manuscript we report on a novel metrology solution for the EUV on-product focus measurement using YieldStar. The new metrology has been qualified on the Logic product wafers and when combined with the advanced techniques and algorithm shows a performance that is accurate and precise enough to meet EUV requirements. Furthermore, the new methodology provides the opportunity for on-product focus monitoring and control through different scanner interfaces. Here we present a case in which the Imaging Optimizer using the EUV metrology data shows an improvement of over 20% on the focus uniformity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.