Data fusion architecture can be categorized into data-level fusion, feature-level fusion and decision-level fusion by its characteristics. In this paper, we provide a new target identification fusion technology in which we adopt not only feature-level fusion approach but also decision-level fusion approach in order to consider even sensors' uncertain reports and improve fusion performance. In feature-level fusion stage, we applied fuzzy set theory and Bayesian theory based on the sensor data, such as sensor parameter and detected target information. In decision-level fusion stage, we applied advanced Bayesian theory to decide final target identification. Experimental results with various kinds of sensor data have verified the robustness of our algorithms comparing with conventional feature-level, decision-level fusion algorithms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.