We present the latest results on two kinds of photon detectors: single photon detectors (SPDs) and photon number resolving detector (PNRD). We developed high speed and low noise SPDs using superconducting nano-wire (abbreviated by SNSPD) and semiconductor (InGaAs) avalanche photodiode (APD). The SNSPD system has totally four channels all of which have the detection eciency higher than 16% at 100Hz dark count rate. The InGaAs APD system also has four channels and the best performance is represented by the after-pulse probability of 0.61%, the dark count probability of 0.71×10-6 (~1kHz), and the detection eciency of 10.9%. Both systems were applied to wavelength division multiplexing quantum key distribution (WDM-QKD) operated at 1.2GHz repetition rate in a eld environment. The PNRD is made of superconducting transition edge sensor. It was applied to the implementation of quantum receiver which could beat the homodyne limit of the bit error rate of binary coherent states. We discuss future perspective of quantum communications with those photon detection technologies, including multi-user QKD networks and low-power high capacity communications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.