KEYWORDS: 3D image processing, Databases, Detection and tracking algorithms, Principal component analysis, Matrices, Data centers, Data modeling, Image filtering, Facial recognition systems, Feature extraction
As a typical multilinear dimensionality reduction (DR) method, tensor locality preserving projection (TLPP) has been successfully applied in many practical problems. However, TLPP depends mainly on preserving its local neighbor graph which often suffers from the following issues: (1) the neighbor graph is constructed with the Euclidean distance which fails to consider the relationships among different coordinates for tensor data; (2) the affinity matrix only focuses on the local structure information of samples while ignoring the existing label information; (3) the projection matrices are nonorthogonal, thus it is difficult to preserve the local manifold structure. To address these problems, a multilinear DR algorithm called optimal neighbor graph-based orthogonal tensor locality preserving projection (OG-OTLPP) is proposed. In OG-OTLPP, an optimal neighbor graph is first built according to tensor distance. Then the affinity matrix of data is defined by utilizing both the label information and the intrinsic local geometric properties of the data. Finally, in order to improve the manifold preserving ability, an efficient and stable scheme is designed to iteratively learn the orthogonal projections. We evaluate the proposed algorithm by applying it to image recognition. The experimental results on five public image databases demonstrate the effectiveness of our algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.