The spectral region between 1600 and 1800 nm is still a band where optical amplifiers struggle to achieve satisfactory gain and output power levels. The output power typically does not exceed few tens of milliwatts, what severely limits some applications. In this paper, the bismuth-doped fiber amplifier (BDFA) operating beyond 1600 nm is presented. We demonstrate the in-house developed BDFA capable of providing output powers that exceed 200 mW for wavelengths near 1700 nm. The performance of the amplifier is discussed and various properties of the device are presented such as gain characteristics and noise figure.
In this paper, we performed numerical and experimental study of the stability of bismuth-doped high-GeO2 glass core fiber used as an active medium in lasers operating in the wavelength region 1600 - 1800 nm. Mainly, we focus on the investigation of the joint effects of temperature and pumping radiation on the spectroscopic and laser characteristics of the fibers. Temporal evolution of the degradation of bismuth-related active centers (BACs) under pumping at 1550 nm, as well as the annealing of the fibers at temperature ranging from 300 to 550 °C was experimentally revealed and studied. A model describing the photochemical processes of the transformation of the BACs at different ambient conditions was proposed and used to make a long-term prediction of the dynamics of the process. The ability to simulate the long-term behavior of the medium might be instrumental since direct measurements are time consuming and therefore impractical. In addition, we performed numerical simulation to find out how the effect of photoinduced degradation of BACs affects the performance of a laser based on this type of fibers.
For the near IR spectral region from 1150 to 1800 nm, including the ranges from 1250 to 1500 nm and 1600 to 1800 nm where efficient rare-earth-doped fiber lasers don’t exist, bismuth-doped optical fibers are promising active materials. The last two spectral ranges are of great interest for some applications, in particular for optical fiber communication. Earlier, we developed Bi-doped fiber lasers and optical amplifiers operating in the first of these spectral ranges. Here, we report new results on the development of bismuth-doped optical fibers and fiber lasers for a spectral range of 1600-1800 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.