With conventional methods, improvements in optical proximity correction (OPC) runtime and accuracy can be challenging. Often improvements in accuracy have limited impact or require longer runtimes. Conversely, improvements in runtime often come at a sacrifice to overall correction quality. OPC industries have been developing and applying machine-learning (ML) methods to address both issues together, such as the Newron® machine learning family of products, which provides for both faster ML-based correction and more accurate resist models. Benchmark testing shows that ML-based correction prediction can yield runtime improvements of 30% or more without sacrificing pattern fidelity. It also shows that a ML resist model can deliver simulation accuracy 15% better than a conventional lithography model. This paper discusses the conversion flow from baseline OPC recipe to ML-accelerated recipe and presents results of a study that applies this technique to a sub-5 nm EUV test case, as well as results of a study that leverages a ML resist model to improve OPC accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.