A phase-sensitive optical time-domain reflectometry (Φ-OTDR) system using dual heterodyne pulses combined with heterodyne demodulation is proposed. The theory of this system is analyzed. The experimental results show that this system can achieve a very large dynamic range with a frequency range of 50 Hz to 25 kHz and an amplitude range of 0.9 rad to 73 rad. At the same time, multi vibrations at different locations can also be well detected.
The properties of noise induced by stimulated Brillouin scattering (SBS) in long-range interferometers and their influences on the positioning accuracy of dual Mach-Zehnder interferometric (DMZI) vibration sensing systems are studied. The SBS noise is found to be white and incoherent between the two arms of the interferometer in a 1-MHz bandwidth range. Experiments on 25-km long fibers show that the root mean square error (RMSE) of the positioning accuracy is consistent with the additive noise model for the time delay estimation theory. A low-pass filter can be properly designed to suppress the SBS noise and further achieve a maximum RMSE reduction of 6.7 dB.
The phase generated carrier (PGC) arctangent algorithm needs to be compensated when the carrier modulation depth C
deviates from 2.63 rad. Parameters measurement error can induce an incomplete compensation in the arctangent
algorithm. The demodulation distortion due to parameters estimation error is analyzed quantitatively in this paper. The
relative amplitude error (RAE) and harmonic suppression ratio (HSR) are considered, which indicate a linear distortion
and a nonlinear one separately. Theoretical analysis shows that the fluctuation range of RAE has a linear relation with an
absolute value of δC which is the estimation error of the modulation depth C. The fluctuation range of RAE also has a
square relation with δφ1, δφ2 which are the estimation error of the phase delay Δφ1Δφ2 of fundamental and second
harmonic carriers respectively. Similarly, minimum HSR decreases by 6dB along with a doubled absolute value of δC
and by 12dB with that of δφ1. Experimental results are presented to corroborate the theory.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.