Cytochrome c, an essential protein integral to the electron transport chain within cellular mitochondria, plays a crucial role in the intricate process of apoptosis, or programmed cell death. An early event in apoptosis involves the release of cytochrome c from the mitochondria's intermembrane space into the cytoplasm. This paper explores the detection of cytochrome c during apoptosis using Raman spectroscopy, with a specific focus on its release from the mitochondria of human microglial cells (HTHμ). Raman spectroscopy, a non-invasive and label-free analytical technique, allows the examination of biomolecular changes based on their chemical properties. Our experimental approach induced apoptosis in HTHμ cells using methamphetamine (METH) and utilized Raman spectroscopy on both control and apoptotic samples. Through the analysis of spectra by singular value decomposition (SVD), which reveals subtle trends and facilitates biological interpretation, distinct spectral features corresponding to cytochrome c were identified. This evidence supports the concept of cytochrome c release from the mitochondria during apoptosis. The label-free nature and high sensitivity of Raman spectroscopy position it as a promising technique for studying apoptosis in biomedical research and contributing to the development of innovative diagnostic approaches for apoptotic-related disorders.
Programmed cell death, or apoptosis, can be triggered in C6 glial cells through exposure to the drug methamphetamine. Non-invasive, quantitative tracking of apoptotic glial cell morphology can be difficult, as many cellular samples are weakly scattering, and therefore traditional bright field images may be of low contrast. Higher contrast images may be found through incorporation of the quantitative phase delay a beam can undergo due to transmission through a sample. In addition, quantitative phase information can be used, non-invasively, to track meaningful morphological quantities over time. Digital holographic microscopy (DHM) and utilization of the transport of intensity equation (TIE) are two label-free, high-resolution phase imaging techniques. DHM quantitatively retrieves phase through measurement of a hologram, or the interference pattern created when combining object and reference beams. The TIE quantifies the relationship between a field’s phase and intensity upon propagation. Solving the TIE requires measurement of an in-focus intensity, and images in symmetric planes about focus. On a setup capable of simultaneous data collection for both techniques, phase reconstructions were retrieved of C6 rat glial cells undergoing methamphetamine induced apoptosis. The two techniques’ measurements of total optical volume of cell clusters were compared over time. Additionally, the behavior of cells’ index of refraction during apoptosis was explored through optical diffraction tomography (ODT) retrieved reconstructions. Through these reconstructions, both cell volume and cell optical volume were tracked. The average relative refractive index behavior measured by ODT was extended to extrapolate volume from the TIE/DHM optical volume measurements.
Non-invasive methods of tracking morphological cell changes are based on measurements of phase, which is proportional to the cell thickness and allows calculation of cell volume. Additionally, Raman micro-spectroscopy is widely used for the mapping of chemical composition within live biological samples, such as cells, organoids, and tissues. We have previously reported the use of Raman spectroscopy and Digital Holographic microscopy (DHM) to study cell death induced by methamphetamine treatment. Here, we have replaced DHM with another method that is capable of real-time high resolution phase reconstruction. Assembling or altering a system to make the measurements required to solve the Transport-of-Intensity Equation (TIE) is easier than implementing a DHM setup. For the full phase retrieval, TIE requires only the data collected in the focal plane and in two planes symmetrically positioned about the focus. Furthermore, TIE is robust to reduced spatial and temporal coherence. Since TIE can utilize incoherent sources of illumination, we implemented a TIE setup within an existing Raman microscope, which provided near simultaneous chemical composition and morphological cell data. This setup is well-suited to study another form of programmed cell death, ferroptosis, which is the main cause of tissue damage driven by iron overload and lipid peroxidation. Previously, only invasive cell biological assays were used to monitor the expression level and subcellular location of proteins known to bind iron or be involved in ferroptosis. In this work, our group applied Raman spectroscopic techniques to study MDA-MB-231 breast cancer cells treated with an activator and/or inhibitor of ferroptosis.
Transport of intensity (TIE) and digital holographic microscopy (DHM) are imaging techniques capable of real-time high resolution phase reconstructions. DHM is a widely used technique that provides phase maps through numerical reconstruction of light propagation of captured hologram intensities generated by interference between an object and a reference beam. TIE is a bright-field compatible technique that yields phase reconstructions through intensity measurements of a single object beam at symmetric planes about the focal plane. A TIE setup is simpler than DHM due to its non-interferometric nature and may yield a higher resolution reconstruction than DHM. Since TIE is a somewhat less-mature technique, we have developed a setup capable of both TIE and DHM measurements and simultaneously measured the volume changes of biological cells using both techniques. The setup is based on a modified bright-field microscope, with the addition of laser illumination for the DHM measurements. Live C6 glial cells were monitored as a hydrogen peroxide solution was introduced to the sample media to produce a visible and measurable decrease in cell volume through apoptosis. This decrease in volume was simultaneously measured by TIE and DHM, and the results were directly compared. Additionally, volume changes in C6 glial cells undergoing methamphetamine-induced apoptosis were tracked and compared.
Quantitative phase imaging (QPI) provides a label free method for imaging live cells and allows quantitative estimates of cell volume. Because the phase of light is not directly measurable at an imaging sensor, QPI techniques involve both hardware and software steps to reconstruct the phase. Digital holographic microscopy (DHM) is a QPI technique that utilizes an interferometer to combine a reference beam with a beam that passes through a specimen. This produces an interference pattern on the image sensor, and the specimen’s phase can be reconstructed using diffraction algorithms. One limitation of DHM is that the images are subject to coherent diffraction artifacts. Transport of intensity (TIE) method, on the other hand, uses the fact that defocused images of a specimen depend on the specimen’s phase to determine the phase from two or more defocused images. Its benefit over DHM is that it is compatible with conventional bright field imaging using sources of relatively low coherence. Although QPI methods can be compared on a variety of static phase targets, these largely consist of phase steps rather than the phase gradients present across cells. In order to compare the QPI methods described above on live cells, rapid switching between QPI modalities is required. We present results comparing DHM and TIE on a custom-built microscope system that allows both techniques to be used on the same cells in rapid succession, which allows the comparison of the accuracy of both measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.