Hollow optical fiber is an important means for transmitting mid-infrared laser radiations (e.g. 10.6 μm CO2 laser) in medical surgery applications. Presently it’s still a challenge to establish a flexible, low-cost hollow fiber that can transmit the invisible mid-infrared light and the visible indicator light simultaneously. In this work, we selected flexible acrylonitrile butadiene styrene (ABS) plastic tubing and polymethylmethacrylate (PMMA) plastic optical fiber to fabricate a PMMA/ABS plastic tube-based hollow optical fiber. The ABS plastic tube with Ag/AgI plating on the inner surface was used to transmit CO2 laser. The PMMA plastic optical fibers integrated around the output end of the ABS tube-based Ag/AgI hollow fiber was used to deliver visible light. The results show that the CO2 laser transmission loss of this hollow fiber goes up from 0.74 to 1.22 dB/m as the bending angle increases from 0° to 120°. The 5-watt CO2 laser can be transmitted continuously for at least 6 minutes. The illumination of visible light transmitted through the PMMA plastic optical fibers can reach 1171 lux. Compared with conventional silica glass tube-based dual- core hollow fiber, the PMMA/ABS plastic tube-based hollow fiber is more robust, flexible and easy to couple. The PMMA/ABS plastic tube-based hollow optical fiber provides new ideas for transmitting invisible mid-infrared light and the visible indicator light simultaneously, which is expected to build a new laser surgery medical equipment.
With the rapid development of terahertz (THz) science and technology, THz transmission has attracted widespread attention. Compared with wireless transmission in free space, THz wave can achieve bending, low-loss and stable propagation in the waveguide. Several types of THz waveguides have been reported. Among them, THz hollow waveguide (HWG) possesses the advantages such as simple structure, easy preparation and low cost. Recently, bendable and low-loss plastic THz HWGs has made progress in our group. This paper gives a review of the research progress in the field of the THz HWGs based on plastic tubing materials, including polymer tube waveguide, metal-coated polymer HWG and metal/dielectric polymer HWG. Problems existing in the plastic HWGs, and key points of future research work were discussed with consideration of some issues aroused in practical applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.