When using near infrared spectroscopy to predict the moisture content of potato leaves, a large amount of spectral data needs to be processed, resulting in a time-consuming and labor-intensive calculation process. This paper proposes to use a variety of feature wavelength extraction methods to reduce the amount of calculation of near-infrared spectral data, and according to the comparison of prediction results, the feature wavelength extraction method with the best extraction effect is obtained. First, the spectral reflectance information of 110 fresh potato leaves in the 900~2100nm band is collected, and then the Regression Coefficient (RC), Principal Component Analysis (PCA), first-order derivative correlation extraction are used respectively Method, extract the characteristic wavelengths from the full-band spectral data, and finally establish a BP neural network prediction model according to the characteristic wavelengths extracted in three different ways, and compare the prediction results to obtain the optimal characteristic wavelength extraction method. The results show that the BP neural network model established by the characteristic wavelength extracted by the Regression Coefficient (RC) has the best prediction effect, the prediction set decision coefficient (R2) is 0.9698, and the root mean square error (RMSE) is 0.3177. In this experiment, on the basis of reducing the amount of near infrared spectroscopy data by more than 90%, a good prediction effect was achieved, and the purpose of quickly and concisely predicting the moisture content of potato leaves was achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.