Pattern noise and nonlinearity are common problems in many image sensors that limit their performance. We present an algorithm based on neural network to correct pattern noise and nonlinearity of the image sensor when the gray value approaches the saturation point to improve the linear range and image contrast of image sensors. The photon transfer curve (PTC) of each pixel is evaluated through a photographic test with an image sensor at different exposures. Assuming that the PTC of the ideal image sensor is a proportional function, the nonlinear region of the PTC of each pixel is corrected to the targeted curve using a neural network. The experimental results show that the image contrast and dynamic range of the corrected image can be significantly improved while the pattern noise of the corrected image is also effectively removed. In addition, the algorithm corrects the damaged pixels of the image sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.