The interaction of extreme ultraviolet (EUV) light with matter is a critical step in EUV lithographic processes, and optimization of the optical material properties of all elements in the lithographic chain (from optical coatings and pellicles to photoresists) is crucial to harnessing the full power of EUV lithography. To optimize these materials, accurate measurements of EUV absorption and reflection are needed to extract the corresponding actinic optical properties and structural parameters. Here, we report on actinic EUV metrology-based absorption and reflection measurements enabled by coherent table-top EUV sources based on high-harmonic generation. We demonstrate the capabilities and flexibility of our setup with measurements on crystalline films, photoresist systems, and carbon nanotube membranes and provide extracted optical parameters, absorption kinetics, and 2D transmission maps, respectively. These results showcase the power of lab-based actinic inspection methods based on compact, coherent EUV sources for providing crucial data for material optimization and lithographic simulation.
The interaction of EUV light with matter is a critical step in EUV lithographic processes and optimization of the optical material parameters of photoresists and reflector/absorber stacks is crucial to harness the full power of EUV lithography. To optimize these materials, accurate measurements of EUV absorption and reflection are needed to extract the corresponding actinic optical properties and structural parameters. Here, we report on two endstations within imec’s AttoLab that enable actinic EUV absorption and reflection measurements. We commission these tools with measurements on model thin film and photoresist systems and provide extracted optical parameters as well as absorption kinetics, respectively. These results showcase the power of these tools for providing crucial data for material optimization and lithographic simulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.