To estimate microwave emissivity of sea foam consisting of dense seawater-coated air bubbles, the effective medium approximation is applied by regarding the foam layer as an isotropic dielectric medium. The Rayleigh method is developed to calculate effective permittivity of the sea foam layer at different microwave frequencies, air volume fraction, and seawater coating thickness. With a periodic lattice model of coated bubbles and multilayered structures of effective foam media, microwave emissivities of sea foam layers with different effective permittivities obtained by the Rayleigh method are calculated. Good agreement is obtained by comparing model results with experimental data at 1.4, 10.8, and 36.5 GHz. Furthermore, sea foam microwave emissivities calculated by well-known effective permittivity formulas are investigated, such as the Silberstein, refractive model, and Maxwell-Garnett formulas. Their results are compared with those of our model. It is shown that the Rayleigh method gives more reasonable results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.