Implementing frequency-encoded photonic linear transformations can be of significant interest not only for quantum information processing and machine learning hardware accelerators, but also for optical signal processing, communications, and spectrotemporal shaping of light. We present a flexible, reconfigurable architecture to implement such arbitrary linear transformations for photons using the synthetic frequency dimension of dynamically modulated microring resonators. Inverse design of the coupling between the frequency modes enables arbitrary scattering matrices to be scalably implemented with high fidelity, allowing for nonreciprocal frequency translation, unitary and nonunitary transformations. Our results introduce new functionalities for linear transformations beyond those possible with real-space architectures that are typically time-invariant.
Within the last two decades, it has been theoretically shown and experimentally measured that the radiative heat transfer between bodies in the near-field significantly exceeds the blackbody limit. This enhancement in heat transfer arises from evanescent surface waves, for example surface plasmon and surface phonon polaritons, that can tunnel between bodies at different temperatures. This result holds promise for applications in nano-imaging and lithography, thermophotovoltaics, nanoscale refrigeration and thermal circuitry. Although significant progress has been made in near-field heat transfer using passive materials, such as plasmonic metals and polar dielectrics, realizing actively tunable near-field heat transfer modules is of fundamental importance for controlling the photon heat flux. In this talk, analogously to its electronic counterpart, the metal-oxide-semiconductor (MOS) capacitor, we propose a thermal switching mechanism based on accumulation and depletion of charge carriers in an ultra-thin plasmonic film, via application of external bias. In our proposed configuration, the plasmonic film is placed on top of a polaritonic dielectric material that provides a surface phonon polariton thermal channel, while also ensuring electrical insulation for application of large electric fields. The variation of carrier density in the plasmonic film enables the control of the surface plasmon polariton thermal channel. We show that the interaction of the surface plasmonic mode with the surface phonon polariton significantly enhances the net heat transfer. We study SiC as the oxide and explore three classes of gate-tunable plasmonic materials: transparent conductive oxides, doped semiconductors, and graphene, and theoretically predict contrast ratios as high as 225%.
We derive the fundamental limits of energy harvesting from the outgoing thermal radiation from the ambient to the outer space. The derivations are based on a duality relation between thermal engines that harvest solar radiation and those that harvest outgoing thermal radiation. We also derive the ultimate limit for harvesting outgoing thermal radiation, analogous to the Landsberg limit for solar energy harvesting, and show that the ultimate limit far exceeds what was previously thought to be possible.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.