In this work, a cost-effective optofluidic system is propossed and preliminary experimental results are presented. A microfluidic channel monolithically integrated into a photonic integrated circuit technology is used in conjunc- tion with a cyclo-olefin copolymer (COC) substrate to provide fluidic in- and output ports. We report on initial experimental results as well as on the simple and cost-effective fabrication of this optofluidic system by means of micro-milling.
Fiber-to-chip light coupling using a graded-index (GRIN) fiber collimator is investigated. Our experiments with grating couplers and strip waveguides fabricated in a photonic integrated circuit technology reveal that the peak coupling efficiency of a GRIN fiber collimator is 7.8 dB lower than that of a single-mode fiber. However, the 3-dB alignment tolerance is improved by a factor of about 5.7 giving rise to pluggable sensor solutions. This work opens a path toward a cost-effective and portable sensor platform based on pluggable photonic biosensors using GRIN fiber collimators.
This work presents current investigations to integrate photonic biosensor into a SiGe BiCMOS technology. We employ an electronic-photonic integrated circuit (EPIC) platform to combine electronic devices with optical biosensors in a single chip. This gives perspective to a fully packaged, cost-effective photonic sensor system. This technology is intended to create a large scale effect, because it enables the development of numerous applications in health-care, food analysis as well as environmental monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.