Silas J. Leavesley received a B.Sc. in Chemical Engineering in 2003 from Florida State University and a Ph.D. in Biomedical Engineering in 2008 from Purdue University. He is currently an assistant professor of Chemical and Biomolecular Engineering, Pharmacology, and the Center for Lung Biology at the University of South Alabama. His research interests lie in the development of spectral imaging technologies for medical sciences research and clinical applications.
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
C57Bl/6 mice underwent ligation of three of four caudal branches of the left common carotid artery (left external carotid, internal carotid, and occipital artery) with the superior thyroid artery left intact under IACUC approved protocol. Vessels were harvested at a variety of timepoints to compare degrees of remodeling, including 4 weeks and 5 months post-surgery. Immediately following harvest, vessels were prepared by longitudinal opening to expose the luminal surface to a 20X objective. A custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter arrary (Versachrome, Semrock, Inc.) were used to achieve spectral imaging. Excitation scans utilized wavelengths between 340 nm and 550 nm in 5 nm increments. Hyperspectral data were generated and analyzed with custom Matlab scripts and visualized in ENVI. Preliminary data suggest consistent spectral features associated with control and remodeled vessels.
Spectra of autofluorescent molecules were obtained using a custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) Scans utilized excitation wavelengths from 360 nm to 550 nm in 5 nm increments. The resultant spectra were used to examine hyperspectral image stacks from various collaborative studies, including an atherosclerotic rat model and a colon cancer study. Hyperspectral images were analyzed with ENVI and custom Matlab scripts including linear spectral unmixing (LSU) and principal component analysis (PCA). Initial results suggest the ability to separate the signals of endogenous fluorophores and measure the relative concentrations of fluorophores among healthy and diseased states of similar tissues. These results suggest pathology-specific changes to endogenous fluorophores can be detected using excitationscanning hyperspectral imaging. Future work will expand the library of pure molecules and will examine more defined disease states.
Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.
Our lab has designed a novel excitation-scanning hyperspectral imaging system with high fluorescence signal detection, low acquisition time, and enhanced spectral discrimination. In this study, we surveyed a comprehensive set of excised tissues to assess the feasibility of detecting tissue-specific pathologies using excitation-scanning. Fresh, untreated tissue specimens were imaged from 360 to 550 nm on an inverted fluorescence microscope equipped with a set of thin-film tunable filters (Semrock, A Unit of IDEX). Images were subdivided into training and test sets. Automated endmember extraction (ENVI 5.1, Exelis) with PCA identified endmembers within training images of autofluorescence. A spectral library was created from 9 endmembers. The library was used for identification of endmembers in test images. Our results suggest (1) spectral differentiation of multiple tissue types is possible using excitation scanning; (2) shared spectra between tissue types; and (3) the ability to identify unique morphological features in disparate tissues from shared autofluorescent components. Future work will focus on isolating specific molecular signatures present in tissue spectra, and elucidating the contribution of these signatures in pathologies.
The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control.
The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength’s intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging.
Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.
An endoscope for simultaneous macroscopic navigation and microscopic inspection of luminal sidewalls
View contact details
No SPIE Account? Create one