We compare optical characteristics of black phosphorus photodetectors integrated with a stripe waveguide and a ridge waveguide by optical field intensity and absorption spectrum, which proves that the stripe waveguide is better for enhancing the optical absorption of black phosphorus photodetector. The strain effect on the band structure of black phosphorus is investigated using the first-principles method based on density functional theory (DFT). The band structure of 5-layer BP experiences a direct-indirect-direct transition and a semiconductor-metal transition (SMT) when applied different strains. As a result, the cut-off wavelength and the responsivity of this strained BP photodetector can reach 3.76μm and 0.48 A/W respectively. In a word, the waveguide-integrated black phosphorus photodetector under strain for mid-infrared range may promote potential novel optoelectronic device applications based on two-dimensional materials in the future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.