A theoretical design and simulation of a 3D ladar system concept for surveillance, intrusion detection, and access control
is described. It is a non-conventional system architecture that consists of: i) multi-static configuration with an arbitrarily
scalable number of transmitters (Tx's) and receivers (Rx's) that form an optical wireless code-division-multiple-access
(CDMA) network, and ii) flexible system architecture with modular plug-and-play components that can be deployed
for any facility with arbitrary topology. Affordability is a driving consideration; and a key feature for low cost is
an asymmetric use of many inexpensive Rx's in conjunction with fewer Tx's, which are generally more expensive. The
Rx's are spatially distributed close to the surveyed area for large coverage, and capable of receiving signals from multiple
Tx's with moderate laser power. The system produces sensing information that scales as NxM, where N, M are the
number of Tx's and Rx's, as opposed to linear scaling ~N in non-network system. Also, for target positioning, besides
laser pointing direction and time-of-flight, the algorithm includes multiple point-of-view image fusion and triangulation
for enhanced accuracy, which is not applicable to non-networked monostatic ladars. Simulation and scaled model experiments
on some aspects of this concept are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.