How to build a machine that can continuously learn from observations in its life and make accurate inference/prediction? This is one of the central questions in Artificial Intelligence. Many challenges are present, such as the difficulty of learning from infinitely many observations (data), the dynamic nature of the environments, noisy and sparse data, the intractability of posterior inference, etc. This tutorial will discuss how the Bayesian approach provides a natural and efficient answer. We will start from the basic of Bayesian models, and then the variational Bayes method for inference. Next, we will discuss how to learn a Bayesian model from an infinite sequence of data. Some challenges such as catastrophic forgetting phenomenon, concept drifts, and overfitting will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.