BIFROST is one of the upcoming visitor instruments within the ASGARD array. BIFROST will be deployed at the Very Large Telescope Interferometer (”VLTI”) and is currently under development at University of Exeter. We present the instrumentation design and implementation of a dual-field light source for the calibration and design of the BIFROST instrument within Exeter ”Vanaheim”. The system consists of a beam expander and splitter with associated optics to create an on- and off-axis beam simultaneously. An approach to calibrate the angle of the off-axis beam using an open loop controller is discussed. This report will discuss the OpticStudio-Zemax design and the initial implementation of the system at Exeter.
The BIFROST instrument is poised to revolutionize high-spectral resolution interferometry at the VLTI by extending the accessible wavelength range down to 1.0μm, encompassing the Y, J, and H bands. In this paper, we discuss the optical design for BIFROST’s pre-injection optics which correct for birefringence effects and longitudinal dispersion between the different beam lines. We present the optomechanical design for the light injection module that compresses the beams and injects them into single-mode fibres, while maintaining the full field-of-view of the VLTI auxiliary or unit telescopes. Our fibre switching module will allow for the injection of light into photonic devices optimised for different wavebands or applications. Finally, we outline our integration and alignment strategy and present the first characterisation results obtained in the optics lab at the University of Exeter.
Nulling interferometry is a promising technology to enable prospecting for and characterising sub-stellar companions at extremely close separations and high contrasts. The most scientifically rewarding observations will require extremely well corrected wavefronts in order to deliver consistent, deep nulls that suppress the flux from the central star. We present a two stage system whose first stage deploys a hybrid mode-selective photonic lantern to optimally inject starlight into a single mode fibre. Starlight that does not couple into the primary science fibre is used to sense wavefront errors, including petaling modes that are typically invisible to other methods. The architecture also yields wavefront corrections that are free of non-common path errors. Repeated over multiple telescopes, our system then feeds a second-stage kernel nuller chip implemented as an operating mode of Bifrost in the Asgard instrument suite. This operating mode will enable a variety of science cases including constraining the entropy of formation of giant exoplanets, studying debris disk formation and surveying lensing events for the detection of black holes, all of which drive the requirements for the instrument. We illustrate candidate designs and present early simulations of the modules, finding that Seidr is a feasible means of capitalising a historical window of opportunity to further high contrast and high angular resolution imaging.
MIRC-X and MYSTIC are six-telescope near-infrared beam (1.08-2.38μm) combiners at the CHARA Array on Mt Wilson CA, USA. Ever since the commissioning of MIRC-X (J and H bands) in 2018 and MYSTIC (K bands) in 2021, they have been the most popular and over-subscribed instruments at the array. Observers have been able to image stellar objects with sensitivity down to 8.1mag in H and 7.8mag in K-band under the very best conditions. In 2022 MYSTIC was upgraded with a new ABCD mode using the VLTI/GRAVITY 4-beam integrated optics chip, with the goal of improving the sensitivity and calibration. The ABCD mode has been used to observe more than 20T Tauri stars; however, the data pipeline is still being developed. Alongside software upgrades, we detail planned upgrades to both instruments in this paper. The main upgrades are: 1) Adding a motorized filter wheel to MIRC-X along with new high spectral resolution modes 2) Updating MIRC-X optics to allow for simultaneous 6T J+H observations 3) Removing the warm window between the spectrograph and the warm optics in MYSTIC 4) Adding a 6T ABCD mode to MIRC-X in collaboration with CHARA/SPICA 5) Updating the MIRC-X CRED-ONE camera funded by Prof. Kraus from U. Exeter 6) Carrying out science verification of the MIRC-X polarization mode 7) Developing new software for ABCD-mode data reduction and more efficient calibration routines. We expect these upgrades to not only improve the observing experience, but also increase the sensitivity by 0.4mag in J+H-bands, and 1mag in K-band.
BIFROST, an upcoming instrument for the VLTI, is part of the Asgard Suite, a VLTI visitor instrument. It comprises two spectrograph arms that are optimised for wavelength range of 1- 1.75μm (fed by a fiber that is placed on-axis for fringe tracking/monitoring) and 1-1.3μm (fed by a fiber that can positioned either on-axis or off-axis to observe a faint target) wavelength range, respectively. Volume phase holographic gratings (VPHGs) are employed to achieve high spectral resolving power up to 25,000 and a throughput above 75% for all dispersing elements. In this contribution, we discuss the optical and optomechanical design of the spectrographs, as well as a new relay optics design that minimizes the thermal background, with a factor 4 reduction in thermal background compared to the non-relay optics design. We will also present the first lab results obtained with the YJH spectrograph.
ESO’s Very Large Telescope Interferometer has a history of record-breaking discoveries in astrophysics and significant advances in instrumentation. The next leap forward is its new visitor instrument, called Asgard. It comprises four natively collaborating instruments: HEIMDALLR, an instrument performing both fringe tracking and stellar interferometry simultaneously with the same optics, operating in the K band; Baldr, a Strehl optimizer in the H band; BIFROST, a spectroscopic combiner to study the formation processes and properties of stellar and planetary systems in the Y-J-H bands; and NOTT, a nulling interferometer dedicated to imaging nearby young planetary systems in the L band. The suite is in its integration phase in Europe and should be shipped to Paranal in 2025. In this article, we present details of the alignment and calibration unit, the observing modes, the integration plan, the software architecture, and the roadmap to completion of the project.
BIFROST is a new Y+J and H band beam combiner for the VLTI, and part of the Asgard suite of visitor instruments. BIFROST will unlock a new parameter space at the VLTI by including the astronomical J band and high spectral resolution (up to R ≈ 25,000). It will also have the ability to simultaneously observe on- and off-axis targets. BIFROST’s beam combiner will be an integrated optics chip, fed by single mode optical fibers. BIFROST therefore requires a light injection module to couple the starlight from free space in the VLTI laboratory into the single mode fibers. The light injection module of BIFROST is also responsible for redirecting the starlight towards the fiber couplers; removing the optical path difference between the beams; co-phasing BIFROST with the rest of the Asgard suite; splitting the light off for the off-axis field; selecting the pointing of the off-axis field; optimizing the injection into the fibers; co-phasing the on- and off-axis light; supporting the passage of the full two arcsecond diameter field of view and providing sufficient space for additional BIFROST pre-injection optics. In this contribution we detail the novel design of the BIFROST light injection module, highlighting how it achieves this functionality using as few optics as possible. We also present Zemax Opticstudio tolerancing analysis, demonstrating the feasibility of building this design in the laboratory.
We report progress on Project Prime (PRecision Interferometry with MIRC for Exoplanets) to detect exoplanets using precision closures using MIRC-X and MYSTIC at CHARA. Our investigations include modeling systematics caused by OPD drifts, differential dispersion, beamtrain birefringence, and flatfielding errors. Injection tests suggest we can recover hot Jupiter companions as faint at 1/5000 of the host star brightness with 4 nights of observing and we will present some results of our recent searches for the hot Jupiters. Our upper limits are starting to constrain current-generation Global Circulation Models (GCMs). We propose the addition of modest nulling (10:1) to today’s interferometers in order to vastly increase the ease of this work and to open up many more targets for detections.
BIFROST is the short-wavelength, high-spectral resolution instrument in the Asgard Suite of VLTI visitor instruments. It will be optimized for spectral line studies in the Y, J, and H bands (1.05-1.75 μm) that include many strong lines & molecular features. In this presentation, we outline the BIFROST science drivers that have guided our design choices and map them against the operational modes that are being implemented. We give an overview about the status of the project and the milestones from the ongoing integration & testing phase in Exeter to shipping & commissioning on Paranal, scheduled for 2025 and 2026. We review the BIFROST subsystems and discuss how they interface with the broader Asgard Suite. Finally, we outline other BIFROST-related activities pursued by our group that are intended for implementation in BIFROST as part of future upgrades.
The Center for High Angular Resolution Astronomy (CHARA) has developed and continues to manage an optical interferometric array of six telescopes located on Mount Wilson, California. This interferometer is particularly suited to stellar astrophysics. MIRC-X and MYSTIC beam combiners are two instrumentations of the array. The former is designed to work in the J and H band wavelengths, while the latter is designed to work in the K band. To enhance the spectroscopic capabilities, new GRISMs based on volume phase holographic (VPH) gratings have been designed and manufactured. Two dispersing elements operate in the J band, offering a resolving power of R = 6000 at 1.09 μm and 1.27 μm, while the other two elements work in the K band, providing R = 4000 at 2.17 μm and 2.33 μm. The VPHGs are manufactured employing an innovative process developed at Istituto Nazionale di Astro Fisica (INAF). The prisms for the GRISMs are in CLEARTRAN. The design, manufacturing and assembly of the devices are presented together with the measured performances in terms of diffraction efficiency and diffracted wavefront error.
European Southern Observatory (ESO)’s Very Large Telescope Interferometer (VLTI), Paranal, Chile, is one of the most proficient observatories in the world for high angular resolution astronomy. It has hosted several interferometric instruments operating in various bandwidths in the infrared. As a result, the VLTI has yielded countless discoveries and technological breakthroughs. We propose to ESO a new concept for a visitor instrument for the VLTI: Asgard. It is an instrumental suite comprised of four natively collaborating instruments: High-Efficiency Multiaxial Do-it ALL Recombiner (HEIMDALLR), an all-in-one instrument performing both fringe tracking and stellar interferometry with the same optics; Baldr, a Strehl optimizer; Beam-combination Instrument for studying the Formation and fundamental paRameters of Stars and planeTary systems (BIFROST), a combiner whose main science case is studying the formation processes and properties of stellar and planetary systems; and Nulling Observations of dusT and planeTs (NOTT), a nulling interferometer dedicated to imaging young nearby planetary systems in the L band. The overlap between the science cases across different spectral bands yields the idea of making the instruments complementary to deliver sensitivity and accuracy from the J to L bands. Asgard is to be set on the former AMBER optical table. Its control architecture is a hybrid between custom and ESO-compliant developments to benefit from the flexibility offered to a visitor instrument and foresee a deeper long-term integration into VLTI for an opening to the community.
The Michigan Young Star Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the U.S. National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA Array in July 2021, with baselines up to 331 m, MYSTIC provides a maximum angular resolution of λ / 2B ∼ 0.7 mas. The instrument injects phase-corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC uses a high frame rate, ultra-low read noise SAPHIRA detector and implements two beam combiners: a six-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a four-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J + H band) instrument for simultaneous fringe-tracking and imaging and shares its software suite with the latter to allow a single observer to operate both instruments. We present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future.
The Speckle Imager via MUlti Layer Atmospheric Turbulence Object Reconstructor (SIMULATOR) is a lab-based testbed instrument developed to test for speckle correlation-based techniques in the optical regime. However, this instrument can be used as a testbed against post-processing techniques or algorithms like lucky imaging, phase diversity method etc. The SIMULATOR can emulate 3D atmospheric turbulence behaviour using a three-layer turbulence screen, giving the user command over important site characteristics like wind profile, global fried parameter, global isoplanatic patch, mid-layer and high-layer height effects etc. This testbed is unique in that it can mimic a broad range of site and telescope characteristics accurately without the need for manual intervention or tuning of parameters. The current version can handle a Field of View (FoV) of up to 0.3°, bandwidth ranges from 4860 to 6560 nm and can cover atmospheric turbulence heights up to 83 km.
The Very Large Telescope Interferometer is one of the most proficient observatories in the world for high angular resolution. Since its first observations, it has hosted several interferometric instruments operating in various bandwidths in the infrared. As a result, the VLTI yields countless discoveries and technological breakthroughs. We introduce to the VLTI the new concept of Asgard: an instrumental suite including four natively collaborating instruments: BIFROST, a stellar interferometer dedicated to the study of the formation of multiple systems; Hi- 5, a nulling interferometer dedicated to imaging young nearby planetary systems in the M band; HEIMDALLR, an all-in-one instrument performing both fringe tracking and stellar interferometry with the same optics; Baldr, a fibre-injection optimiser. These instruments share common goals and technologies. Thus, the idea of this suite is to make the instruments interoperable and complementary to deliver unprecedented sensitivity and accuracy from J to M bands. The interoperability of the Asgard instruments and their integration in the VLTI are the main challenges of this project. In this paper, we introduce the overall optical design of the Asgard suite, the different modules, and the main challenges ahead.
BIFROST will be a short-wavelength (λ = 1.0 - 1.7 μm) beam combiner for the VLT Interferometer, combining both high spatial (λ/2B = 0.8 mas) and spectral (up to R = 25,000) resolution. It will be part of the Asgard Suite of visitor instruments. The new window of high spectral resolution, short wavelength observations brings with it new challenges. Here we outline the instrumental design of BIFROST, highlighting which beam combiner subsystems are required and why. This is followed by a comparison All-In-One (AIO) beam combination scheme and an Integrated Optics (IO) scheme with ABCD modulation both in terms of expected sensitivity and the practical implementation of each system.
The BIFROST instrument will be the first VLTI instrument optimised for high spectral resolution up to R=25,000 and operate between 1.05 and 1.7 μm. A key component of the instrument will be the spectrograph, where we require a high throughput over a broad bandwidth. In this contribution, we discuss the four planned spectral modes (R=50, R=1000, R=5000, and R=25,000), the key spectral windows that we need to cover, and the technology choices that we have considered. We present our plan to use Volume Phase Holographic Gratings (VPHGs) to achieve a high efficiency > 85%. We present our preliminary optical design and our strategies for wavelength calibration.
We present science cases and instrument design considerations for the BIFROST instrument that will open the short-wavelength (Y/J/H-band), high spectral dispersion (up to R=25,000) window for the VLT Interferometer. BIFROST will be part of the Asgard Suite of instruments and unlock powerful venues for studying accretion & mass-loss processes at the early/late stages of stellar evolution, for detecting accreting protoplanets around young stars, and for probing the spin-orbit alignment in directly-imaged planetary systems and multiple star systems. Our survey on GAIA binaries aims to provide masses and precision ages for a thousand stars, providing a legacy data set for improving stellar evolutionary models as well as for Galactic Archaeology. BIFROST will enable off-axis spectroscopy of exoplanets in the 0.025-1" separation range, enabling high-SNR, high spectral resolution follow-up of exoplanets detected with ELT and JWST. We give an update on the status of the project, outline our key technology choices, and discuss synergies with other instruments in the proposed Asgard Suite of instruments.
Fast Fourier transform-based phase screen simulations give accurate results only when the screen size (G) is much larger than the outer scale parameter (L0). Otherwise, they fall short in correctly predicting both the low and high frequency behaviors of turbulence-induced phase distortions. Subharmonic compensation is a commonly used technique that aids in low-frequency correction but does not solve the problem for all values of screen size to outer scale parameter ratios (G / L0). A subharmonics-based approach will lead to unequal sampling or weights calculation for subharmonics addition at the low-frequency range and patch normalization factor. We have modified the subharmonics-based approach by introducing a Gaussian phase autocorrelation matrix that compensates for these shortfalls. We show that the maximum relative error in structure function with respect to theoretical value is as small as 0.5% to 3% for (G / L0) ratio of 1/1000 even for screen sizes up to 100 m diameter.
Accurately simulating the atmospheric turbulence behaviour is always challenging. The well-known FFT based method falls short in correctly predicting both the low and high frequency behaviours. Sub-harmonic compensation aids in low-frequency correction but does not solve the problem for all screen size to outer scale parameter ratios (G/L0). FFT-based simulation gives accurate result only for relatively large screen size to outer scale parameter ratio (G/L0). In this work, we have introduced a Gaussian phase autocorrelation matrix to compensate for any sort of residual errors after applying for a modified subharmonics compensation. With this, we have solved problems such as under sampling at the high-frequency range, unequal sampling/weights for subharmonics addition at low-frequency range and the patch normalization factor. Our approach reduces the maximum error in phase structure-function in the simulation with respect to theoretical prediction to within 1.8%, G/L0 = 1/1000.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.