The Keck Planet Imager and Characterizer (KPIC) instrument at the Keck Observatory consists of a series of upgrades to the Keck II Adaptive Optics system and the NIRSPEC spectrograph to enable diffraction-limited, high-resolution (R∼35, 000) spectroscopy, originally in the K (∼2.0−2.5 μm) and L (∼3.2−3.7 μm) bands only. Phase I consisted of single-mode fiber injection/extraction units used in conjunction with an H band pyramid wavefront sensor. Using single-mode fibers provides a gain in stellar rejection, a substantial reduction in sky background, and a stable, well-defined line-spread function on the spectrograph. In 2022, Phase II brought a 1000-actuator deformable mirror, beam-shaping optics, a vortex fiber nulling mode, and more.
In this paper we present the results of the latest upgrades to the KPIC instrument. Among these upgrades, a second fiber bundle with related injection/extraction optics and new dichroics were added to extend KPIC’s science capabilities to y through H band, and to provide access to laser frequency combs for spectral calibration from y-K. Additionally, the charge 2 vortex mask for fiber nulling was supplemented with a charge 1 mask to enable spectroscopy of low mass companions at very small angular separations. Other upgrades included an atmospheric dispersion corrector, a new calibration source switching system, and an optimized tip/tilt control system. Here we show preliminary results of on-sky tests performed in the first few months of re-commissioning, along with the next steps for the instrument.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.