Optical tweezers have become ubiquitous tools in science with use in disciplines ranging from biology to physics, chemistry, and material sciences with thousands of users around the world and a continuously growing number of applications. Here we show how a specially designed instrument, called miniTweezers2.0, can be made both highly versatile and user friendly. We demonstrate the system on three different experiments, which thanks to the close integration of the various parts of the tweezers into a single software are performed largely autonomously. The first experiment involves DNA stretching, a fundamental single molecule force spectroscopy experiment. The second experiment involved the stretching of red blood cells, which can be used to gauge the membrane stiffness of the cells. Lastly, we investigate the interaction between core-shell particles in various environments. Showing how the soft polymer layer extends, or contracts depending on pH and salinity. Our work show potential of automated and versatile optical tweezers systems in advancing our understanding of nano and micro-scale systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.