The established technological standards, architectures, and material choices in the realm of advanced infrared (IR) imaging has enabled the design of high-resolution and high-range IR focal plane arrays (IRFPAs) while minimizing the cost, size, weight, and power consumption of the device. HgCdTe (MCT) has also emerged as the standard choice for the IRFPA device's detector layer as semiconductor material due to its high performance-to-cost, ability to operate optimally at extreme temperatures, and access to new application domains like two-color, active, and passive shortwave infrared (SWIR) imaging. Recent work has focused on a thermomechanical-stress-aware approach for advanced integration of IRFPAs leading to the design of Modified Direct Bond Interconnect (MoDiBI) integration technology which offers the possibility to venture toward design and fabrication of small pixel pitch, large format IRFPAs with longer term operational reliability. In the thermomechanical stress aware approach, finite element modeling is used to predict the effects of cyclic thermal load on the device's components. The device's geometry and materials are optimized based on the prediction.
Hitherto, however, such thermomechanical-stress-aware design has been focused on the detector-readout assemblies. The effect of the IRFPA packaging on the overall IRFPA performance under thermal load remains underexplored. Typically, the packaging involves a Balanced Composite Structure (BCS) sandwiched between the detector chip and the base plate for improving the thermomechanical reliability. In this work, we discuss the impact material choices in BCS has on the induced thermal stresses in critical components of the detector-readout assembly. We show that for an existing intricate and non-linear interplay between the detector chip, Si ROIC, and the BCS components, it may be beneficial to tune the thickness of the Si ROIC and to consider multi-parameter geometry and material optimization for designing IRFPA and packaging assemblies with optimal thermal performance. Further, we also suggest the novel material properties within the BCS stack that yield optimal thermomechanical response in the detector chip for chosen device configurations.
Pixel pitch size reduction was not the focus in early infrared (IR) detector development for a long time with pixel pitch remained at 24 μm or above. Pitch size reduction today is the key enabler for cost-efficient manufacturing of large format arrays and allows compact IR-systems with high spatial resolution. When mastered the smaller pixel pitch geometries will provide consistent range performance in a smaller package, minimized aliasing and false alarm rates, ability to use faster F/# optics and shorter focal length for long range identification and optimized size, weight and power (SWaP) characteristics. Advanced integration technologies (including three-dimensional integration) are necessary to realize small pitch arrays.
EPIR, Inc. has developed thermomechanical stress aware approach for advanced integration of IR focal plane arrays (IRFPAs) – MoDiBI. As intended, MoDiBI allows for favorably addressing the reliability concerns associated with the conventional integration approaches. The current work focuses on extending MoDiBI to small pixel pitch, large format IRFPA integration. Strategies for optimizing the thermal stress induced in the hybridized assembly during thermal cycling, thereby helping in reducing the fatal failures experienced by IRFPAs will be discussed. Applicability of MoDiBI to 1280×720, 8µm pitch IRFPAs will be presented.
Novel integration method that addresses thermo-mechanical reliability of the IRFPA hybrid assembly in advanced three-dimensional integration scheme requires optimization by engineering materials used for vertical integration and geometry engineering of the assemblies to be integrated. We present such optimization scheme and applicability of this method to vertical integration of HgCdTe and Type-II Superlattice (T2SL) based IRFPA.
Metasurface-based optical elements enable abrupt wavefront engineering by locally controlling the properties (amplitude, phase, etc.) of the incident illumination. They hold great potential to promote a new generation of wearable devices and thin optical systems for imaging and sensing. To date, most of the existing metasurface designs rely on highaspect-ratio nanostructures, with a thickness close to or even higher than the wavelength. There has been an increasing demand to reduce the metasurface thickness and nanostructure aspect-ratio, in order to facilitate the fabrication compatibility and integration with electronics and dynamic tunable platforms. Here we demonstrate ultrathin (~ 1/5 of the wavelength) transmissive metalenses for the visible light, using two different approaches of either amplitude or phase modulation. For amplitude modulation, we developed a digital transmission coding scheme that allows manipulation of multiple wavelengths without increasing the thickness or complexity of the structural elements. In order to improve the optical efficiency, phase modulation is necessary, but the design is more challenging. Because the nanoresonators are electromagnetically coupled with each other, compared with high-aspect-ratio nanostructures with wave-guiding confinement. To solve this problem, we developed an inverse design strategy using machine learning. We employ evolutionary algorithms interfaced with Finite-Difference Time-Domain solvers, which not only mimic natural selection in order to determine the optimal arrangement of nanoresonators to achieve the desired target optical functions, but also consider and benefit from the strong interactions between nanoresonators to improve the performance. The machine learning designs significantly improve the focusing efficiency, approximately double of the conventional human designs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.