Graphene oxide (GO) and titanium dioxide-graphene oxide (TiO2-GO) composites were prepared by microwave technique at power of 500 W and for 10 min. The crystalline structure, chemical structure and morphological of graphite, GO and TiO2-GO were investigated in this study. The morphology of GO and TiO2-GO composites were characterized by scanning electron microscopy (SEM). It showed that the TiO2-GO composites seem to consist of TiO2 particles aggregated on the top of graphene oxide layer. The strong peak in the XRD pattern of natural graphite appears at 2θ = 26.6°, corresponding with the interlayer spacing of 0.329 nm while the GO pattern shows a characteristic peak at 2θ = 11.8° is assigned to (002) inter-planar spacing of 0.736 nm, indicating the presence of oxygen-containing functional groups formed during oxidation. These groups cause the GO sheets to stack more loosely, and the interlayer spacing increases from 0.329 nm to 0.736 nm. Additionally, XRD pattern for the TiO2-GO composites at 2θ = 25.3° can be ascribed to the anatase phase of TiO2 (JCPDF 21-1272), which is significantly different from the natural graphite and graphene oxide.
Au, Au-V solid solution, and Au-V2O5 dispersion films were fabricated for comparison of electrical and mechanical
characteristics. Resistivity and nanoindentation hardness increased with increasing V content in all films, but the ratio of
resistivity increase to hardness increase was much lower for the Au-V2O5 films. Measurements of contact force and
electrical contact resistance between pairs of Au or Au-V films show that increased hardness and resistivity in the alloy
films results in higher contact resistance and less adhesion than in pure Au. These results imply that the Au-V2O5 films
may exhibit attractive behavior when used in a contact configuration, but this has not yet been tested.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.