The Airborne Littoral Reconnaissance Technology (ALRT) program has successfully demonstrated the Wide-Field Airborne Laser Diode Array Illuminator (ALDAI-W). This illuminator is designed to illuminate a large area from the air with limited power, weight, and volume. A detection system, of which the ALDAI-W is a central portion, is capable of detecting surface-laid minefields in absolute darkness, extending the allowed mission times to night operations. This will be an overview report, giving processing results and suggested paths for additional development.
The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station’s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army’s Night Vision Lab’s Airborne Mine Detection Arid Test. By participating in Night Vision’s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.
The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and successfully demonstrated a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station's ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of three test bed variants, as reported on last year: the Airborne Laser Diode Array Illuminator prototype (ALDAI-P), the original commercial array version (ALDAI-C), and the most recent wide field-of-view commercial version (ALDAI-W). Using the ALDAI-W variant because of its increased operational capabilities with higher altitudes and wider field of views, ALRT recently demonstrated nighttime operation by detecting minefields over several background variations, expanding Naval reconnaissance capabilities that had been previously limited to daytime operation. This paper describes the demonstration and shows results of the ALDAI-W test.
The utility of Constant False Alarm Rate (CFAR) algorithms is that the selection of a detection threshold may be made independently of image intensity. However, wide application of the algorithms shows that detection values are highly dependent on scene characteristics. A threshold selection algorithm is presented for a CFAR detection algorithm. Fitting the output of the detection algorithm with a model of a portion of the theoretical results allows for background independent threshold selection.
A tactical unmanned aerial vehicle-size illumination system for enhanced mine detection capabilities has been designed, developed, integrated, and tested at the Coastal Systems Station. Airborne test flights were performed from June 12, 2001 to February 1, 2002. The Airborne Laser Diode Array Illuminator uses a single-wavelength compact laser diode array stack to provide illumination and is coupled with a pair of intensified CCD video cameras. The cameras were outfitted with various lenses and polarization filters to determine the benefits of each of the configurations. The first airborne demonstration of a laser diode illumination system is described and its effectiveness to perform nighttime mine detection operations is shown.
The Joint Mine Detection Technology (JMDT) project, following successful field-based testing of its new Tunable Filter Multispectral Camera (TFMC) has now completed initial Airborne Testing of the TFMC at both the Coastal Systems Station and Eglin Air Force Base sites. An overview of the testing is presented along with the investigations into the advantages of a system utilizing the TFMC in airborne operational scenarios. The TFMC-like tuning flexibility was flight-tested using optimized wavelength combinations, which were found using field test data, over a variety of backgrounds and altitudes. The data revealed the suitability of background tuning, polarization, and mechanically co-registered channels as benefits to multispectral target detection. The data were also compared to that collected with an IMC-201 camera, using the six filters of the Coastal Battlefield Reconnaissance and Analysis (COBRA) Advanced Technology Demonstration (ATD) system, in order to determine improvements over existing capabilities.
KEYWORDS: Unmanned aerial vehicles, Video, Video surveillance, Land mines, Global Positioning System, Surveillance, Multispectral imaging, Target detection, Reconnaissance, Reconnaissance systems
The Coastal Battlefield Reconnaissance and Analysis)COBRA) system described here was a Marine Corps Advanced Technology Demonstration (ATD) development consisting of an unmanned aerial vehicle (UAV) airborne multispectral video sensor system and ground station which processes the multispectral video data to automatically detect minefields along the flight path. After successful completion of the ATD, the residual COBRA ATD system participated in the Joint Countermine (JCM) Advanced Concept Technology Demonstration (ACTD) Demo I held at Camp Lejeune, North Carolina in conjunction with JTFX97 and Demo II held in Stephenville, Newfoundland in conjunction with MARCOT98. These exercises demonstrated the COBRA ATD system in an operational environment, detecting minefields that included several different mine types in widely varying backgrounds. The COBRA system performed superbly during these demonstrations, detecting mines under water, in the surf zone, on the beach, and inland, and has transitioned to an acquisition program. This paper describes the COBRA operation and performance results for these demonstrations, which represent the first demonstrated capability for remote tactical minefield detection from a UAV. The successful COBRA technologies and techniques demonstrated for tactical UAV minefield detection in the Joint Countermine Advanced Concept Technology Demonstrations have formed the technical foundation for future developments in Marine Corps, Navy, and Army tactical remote airborne mine detection systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.