Entangled photons generation is an interesting field of research, since progress in this area will directly affect the development of photonic quantum technologies, including quantum computing, simulation and sensing. Several methods have been sifted to increase the performances of entangled photon sources and the integrated optics approach represents a promising strategy. In particular, integrated waveguide sources represent a robust tool, thanks to their stability and the enhancement of nonlinear light-crystal interaction provided by waveguide field confinement.
Here, we show the versatility of a hybrid approach, realizing an integrated optical source for the generation of entangled photon-pairs at telecom wavelength. The nonlinear active medium used is lithium niobate, while the routing and manipulation of the generated signal is performed in aluminum-borosilicate glass photonic circuits. The system is composed of three cascaded devices. First, a balanced directional coupler at the fundamental wavelength equally splits the pump in the lithium niobate waveguides, which generate single-photon pairs through type 0 spontaneous parametric down-conversion process. A third chip, encompassing directional couplers and waveplates, closes the interferometer and recombines the generated photons, thus giving access to different quantum states of light: path-entangled or polarization-entangled states. A thermal phase shifter, which controls the relative phase between the interferometer arms, gives an additional degree of freedom for engineering the output state of the presented photon pairs source. All these components are entirely fabricated by femtosecond laser micromachining, a direct and very versatile technique that allows to process different kind of materials and realize high quality optical circuits.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.