The Atacama Large Millimeter/submillimeter Array (ALMA) Wideband Sensitivity Upgrade (WSU) will at least double the observation bandwidth and improve the sensitivity and scientific capabilities. The WSU requires upgrading the receiver front-end and the associated analog and digital electronics including the correlator, as well as the ALMA software. In line with the WSU mission, the National Astronomical Observatory of Japan (NAOJ) initiated the ALMA Band 8 (385-500 GHz) version2 receiver upgrade project, aiming to build an upgrade of the currently existing receiver cartridge with a substantially improved second-generation version. This project originated from significant advances in receiver technologies and a variety of our previous wideband studies in the last decade. This paper briefly summarizes an overview of this project, scientific needs in this frequency range, and the technical readiness and challenges for critical components and subsystems.
This paper introduces a potential low-power-consumption and low-noise microwave amplifier operated at cryogenic temperature, essential for large-scale multi-pixel heterodyne receivers and fault-tolerant quantum computers. The amplifier employs two millimeter-wave superconductor-insulator-superconductor (SIS) mixers as amplifying elements and a millimeter-wave Josephson array oscillator as the local oscillator source. A proof-of-concept experiment utilizing waveguide SIS mixer modules demonstrated an average gain of approximately 7.5 dB and a noise temperature of around 10 K at microwave frequencies. Additionally, a waveguide Josephson array oscillator module, developed to validate the design, exhibited an output power of roughly 52 nW, estimated from the response of a waveguide SIS detector connected to the oscillator module. These findings indicate the feasibility of realizing a monolithically integrated amplifier chip incorporating SIS mixers and a Josephson array oscillator.
The idea of ALMA Band-4+5 receivers are proposed for the upgrade after 2030. The new receiver will cover the RF frequency of the original Band-4 and Band-5 with continuous frequency tuning over 125 –211 GHz with dual polarizations, dual sidebands capability. The instantaneous intermediate frequency (IF) bandwidth is up to 16 GHz per sideband and per polarization. Both the SIS-based receiver and HEMT-based receiver schemes are considered. For the SIS receiver scheme, the niobium-based SIS junctions will be fabricated to form mixer chips, and integrated into the mixer blocks with broadband waveguide 3-dB quadrature hybrid couplers with LO couplers, cryogenic IF low-noise amplifiers, and 2-20 GHz coaxial 3-dB quadrature hybrid couplers to form sideband separating down-converters. The inputs of the sideband separating down-converters are fed by the ellipsoidal mirror pairs, corrugated feedhorn and the orthomode transducer. For the HEMT-based receiver scheme, using the same optics configuration as the SIS-based receiver, the cryogenic InP HEMT low-noise amplifiers (LNAs) chains cover 125 – 211 GHz operated in 15-K ambient temperature will be the key components of the cold cartridge assembly (CCA). For the warm cartridge assembly, a pair of sideband-separating diode or resistive transistor mixers will provide four-channel 16-GHz IF instantaneous bandwidth. To avoid the possible interference between LO and IF signals, considering the possible 16 GHz IF bandwidth over 4 – 20 GHz, the LO fundamental frequency will be chosen in 24 - 32 GHz, followed by an active frequency tripler to form the phase-lock loop with 72 – 96 GHz frequency tuning range. The key components with 51.2% relative bandwidth to be developed in-house are Nb SIS mixers, RF InP HEMT LNAs, 3-dB waveguide hybrid couplers, orthomode transducers, corrugated horn antenna, and optics mirror pairs.
Spectroscopic observations of the far-infrared [Oiii] 88 μm and [Cii] 158 μm lines present a pathway to explore the mechanisms of the emergence of massive galaxies in the epoch of reionization and beyond, which is one of the most fundamental questions in astronomy. To address this question, the Far-Infrared Nebular Emission Receiver (FINER) project is developing two wideband dual-polarization sideband-separating heterodyne receivers at 120–210 GHz and 210–360 GHz for the Large Millimeter Telescope (LMT) in Mexico. Compared with Atacama Large Millimeter/submillimeter Array (ALMA), LMT provides 40% of ALMA’s light-collecting area and a similar atmospheric transmittance, but FINER plans to have an instantaneous intermediate frequency (IF) of 3–21 GHz per sideband per polarization which is five times wider than current ALMA’s bandwidth. Therefore, FINER is going to offer cutting-edge spectral scanning capability in the next several years.
The project is currently in an active development phase. In this proceeding, the latest development status for FINER, including the optics, wideband waveguide components as well as low-noise superconductor-insulator-superconductor (SIS) mixers is reported.
We have been developing a wideband heterodyne receiver for simultaneous observations in isotopologue CO lines of J = 2–1 and J = 3–2 transitions with dual-polarization. To achieve these simultaneous observations, a wideband frequency separation system was required in the radio frequency circuit because the intermediate frequency range of the superconductor-insulator-superconductor mixer is narrower than the frequency range of the CO lines from J = 2–1 to J = 3–2. As the frequency separation system, a waveguide multiplexer that connects three types of diplexers was applied. The prototype multiplexer was already developed and installed in the 1.85-m radio telescope. Then, we succeeded in commissioning observations simultaneously in 230 and 345 GHz bands with single polarization. We are currently working on improving the multiplexer and developing a 90° differential phase shifter and a wideband orthomode transducer (OMT). The 90° differential phase shifter and OMT can be combined to operate as a circular polarizer. We are planning to realize observations of both linearly and circularly polarized waves by using the OMT and circular polarizer, respectively. A part of this development can contribute to the future development of Atacama Large millimeter/submillimeter Array and Very Long Baseline Interferometry telescopes. In this paper, we describe the development of the prototype wideband receiver and the development status of the OMT, circular polarizer, and a new multiplexer.
Unveiling the emergence and prevalence of massive/bright galaxies during the epoch of reionization and beyond, within the first 600 million years of the Universe, stands as a pivotal pursuit in astronomy. Remarkable progress has been made by JWST in identifying an immense population of bright galaxies, which hints at exceptionally efficient galaxy assembly processes. However, the underlying physical mechanisms propelling their rapid growth remain unclear. With this in mind, millimeter and submillimeter-wave spectroscopic observations of redshifted far-infrared spectral lines, particularly the [Oiii] 88 μm and [Cii] 158 μm lines, offers a crucial pathway to address this fundamental query.
To this end, we develop a dual-polarization sideband-separating superconductor-insulator-superconductor (SIS) mixer receiver, FINER, for the Large Millimeter Telescope (LMT) situated in Mexico. Harnessing advancements from ALMA’s wideband sensitivity upgrade (WSU) technology, FINER covers radio frequencies spanning 120–360 GHz, delivering an instantaneous intermediate frequency (IF) of 3–21 GHz per sideband per polarization, which is followed by a set of 10.24 GHz-wide digital spectrometers. At 40% of ALMA’s light-collecting area, the LMT’s similar atmospheric transmittance and FINER’s 5 times wider bandwidth compared to ALMA culminate in an unparalleled spectral scanning capability in the northern hemisphere, paving the way for finer spectral-resolution detection of distant galaxies.
We present the results of a digital calibration technique applied to an Atacama Large Millimeter/submillimeter Array sideband separating wideband astronomical receiver of 275 to 500 GHz radio frequency (RF) and 3 to 22 GHz intermediate frequency bandwidth. The calibration technique consists of computing the magnitude ratio and the phase difference of the receiver output, and then applying correction constants to the digitized signals. Two analog-digital converters are used to digitize the signals and an field-programmable gate array for the processing. No modification in the analog receiver is required to apply the calibration, as it works directly on upper sideband/lower sideband signals. The technique improved the receiver temperature compared with the double sideband case by increasing the sideband rejection ratio by around 30 dB on average. It is shown that even more rejection can be obtained with more careful control of the RF calibration input power.
In recent years, NAOJ has contributed designs and production of waveguide and optics components for ALMA bands 1 (35-50 GHz) and 2 (67-116 GHz) receivers. This includes several novel ideas in the design of corrugated horns and OMTs and the application of 3D printing for the fabrication of key components of radio receivers. These frequency bands coincide approximately with bands 5 and 6 of ngVLA, the most promising project in the 2020s to exploit synergies with ALMA with the goal of increasing the scientific output of both facilities. This paper reports on the recent ALMA development results and discusses their future application to ngVLA.
The 1.85-m mm-submm telescope has been operated at Nobeyama Radio Observatory to observe molecular clouds in the nearby Galactic Plane based on the molecular lines of 12CO, 13CO, C18O(J = 2–1). We are planning to relocate the telescope to a site (∼2,500 m) at the Atacama Desert in Chile and to newly install a dual-band receiver for simultaneous observations of lines of CO isotopes with the transitions of J = 2–1 and J = 3–2. In order to achieve this goal, we have developed a wideband diplexer to separate radio frequency (RF) 211–275 GHz (ALMA Band 6) and 275–373 GHz (ALMA Band 7). We adopted a waveguide type FrequencySeparation Filters (FSF) as the basic concept of the wideband diplexer in 210–375 GHz. The wideband diplexer (α) has already been fabricated and measured as the prototype, and we thus obtained reasonable performance in the CO lines band. On the other hand, the measurement result indicates the return loss is relatively worse in 280–300 GHz, although it doesn’t affect the simultaneous observations of 230 GHz and 345 GHz band. We carried out 3D shape measurement with an optical microscope, and then, found that there are machining errors in the parts of the resonator in High Pass Filter. The analysis based on electromagnetic simulation reveals that the errors significantly affect return loss around cut-off frequency. In this paper, we describes the design of the waveguide diplexer, S-parameter measurement, and detailed analysis to verify the discrepancy between simulation and measurement.
Currently, we are performing a large-scale survey of molecular clouds toward the Galactic Plane in 12CO, 13CO, and C18O(J = 2–1) with the 1.85-m mm-submm telescope from Nobeyama Radio Observatory. In addition, we are proceeding with the preparation of a new project to observe several additional molecular lines including higher transitions of CO isotopes, such as 12CO, 13CO, and C18O(J = 2–1, 3–2) simultaneously with a wideband receiver (210–375 GHz). The optics has a Cassegrain reflector antenna with Nasmyth beam-waveguide feed and is composed of Main-reflector, Sub-reflector, ellipsoidal mirrors, and plane mirrors. New wideband optics will be required to achieve this goal. In order to accomplish the optics, we have designed a corrugated horn with a fractional bandwidth of ∼56 %, and frequency independent optics to couple the beam from the telescope onto the horn. The corrugated horn has a conical profile and the variable corrugation depth. It has been optimized by using CHAMP, our targeting return loss of better than −20 dB, cross-polarization loss of better than −25 dB, and far-field good radiation pattern. The simulation of the corrugated horn results in low return loss, low crosspolarization, and symmetric beam pattern in that frequency band. The simulated aperture efficiency of the designed receiver optics on the 1.85-m telescope is above 0.76 at all frequencies by using GRASP. Recently, we have succeeded in simultaneous observation of 12CO, 13CO, and C18O(J = 2–1 and 3–2) toward Orion KL with the optics for the first time.
We are investigating a possible microwave amplifier with low noise and low power consumption at cryogenic temperature for large scale multi-pixel heterodyne superconductor-insulator-superconductor (SIS) receivers at millimeter and submillimeter wavelengths. We propose the use of SIS junctions as amplifier elements based on quasi-particle mixing. By connecting an SIS up-converter and an SIS down-converter in series with gain in both converters, a lownoise and low-power-consumption high-frequency amplifier can be obtained in principle. A proof-of-concept study has been made by configuring an amplifier with two Nb/Al-AlOx/Nb mixers in the 150-GHz band in a standard noise and gain measurement setup at 4 K with a microwave noise source as an input signal. We observed a maximum gain of more than 10 dB and a minimum noise temperature of less than 10 K, which suggests that our proposed SIS amplifier is capable for multi-pixel SIS receivers. On the other hand, we also observed a periodical behavior in frequency dependence of the measured noise temperature and gain due to a standing-wave effect between the two SIS mixers, which is a problem to be solved.
The ALMA telescope has been producing ground-breaking science since 2011, but it is mostly based on technology from the 2000s. In order to keep ALMA competitive in the coming decade, timely updates are necessary in order to further improve the science output of the telescope in the coming decades. In this contribution, we will present the status of the different projects and studies which constitute the contribution of East Asia to the ALMA Development Program, such as the production of band 1 receivers, the development of band 2 receivers optics, and of the ACA spectrometer. We will also update on the different hardware and software studies towards the implementation of the ALMA Development Roadmap and additional opportunities.
NAOJ have studied wideband receiver technologies at submillimeter wavelengths toward implementation as future upgrades into the Atacama Large Millimeter/submillimeter Array telescope. We have developed critical components and devices such as waveguide components and superconductor-insulator-superconductor (SIS) mixers targeting radio frequencies (RF) in the 275-500 GHz range and an intermediate frequency (IF) bandwidth of 3-22 GHz. Based on the developed components, quantum-limited low-noise performance has been demonstrated by using a double-sideband receiver frontend in combination with a high-speed digitizer. In addition, a preliminary demonstration of a wideband RF/IF sideband-separating SIS mixer was performed. This paper describes the status of our efforts to develop technology toward wideband receivers for ALMA.
A compact 780–950 GHz sideband separating (2SB) superconductor-insulator-superconductor (SIS) mixer measuring 22 mm × 27 mm × 11 mm is designed in this study. In this mixer block, all components such as a radio frequency (RF) 90° hybrid coupler, a local oscillator (LO) power splitter, two LO couplers, two identical SIS chips, and an intermediate frequency (IF) 90° hybrid coupler are integrated. To minimize the waveguide length for the RF signal path, we separate the placement of the waveguide components into two layers in parallel. One layer contains the RF hybrid and LO couplers, and another layer contains the LO power splitter located above the RF hybrid coupler. They are connected by waveguides fabricated via wire electric discharge machining. We performed three-dimensional electromagnetic simulations and confirmed the results. Furthermore, a 4-12-GHz IF 90° hybrid coupler to combine the IF signals from each SIS chip is designed with an alumina substrate having a relatively high dielectric constant to be integrated in the mixer block. The preliminary test result of single sideband noise temperatures of the fabricated 2SB SIS mixer partly complied with the current Atacama Large Millimeter/submillimeter Array (ALMA) specifications without any loss correction in front of the receiver. Because the RF and LO interfaces of the mixer block are the same as that of the current ALMA band 10 mixer block, band 10 cartridges are expected to be upgraded to 2SB configurations without significant changes in optics.
We present in this paper a study of a low-power consumption cryogenic amplifier with GaAs-based HEMT. A two-stage MMIC low noise amplifier for 2.5-4.5 GHz frequency range has been designed, fabricated and measured at a low-power condition with the temperature range from 300 K to 4 K. To design such a cryogenic MMIC amplifier, firstly we extracted the model of the bare-die transistor at cryogenic temperatures fabricated together with the MMIC. The temperature-dependent DC and RF characteristics of the HEMT have been measured. From the approximate noise model based on the DC characteristics, we verified that the HEMTs offer sufficient gain and reasonably noise at a relative lowpower operation condition. Subsequently, we designed a low-power dissipation cryogenic MMIC amplifier utilizing the cryogenic s2p model of the HEMTs biased at the optimal low-power condition. At cryogenic temperature, the GaAsbased amplifier achieves a gain larger than 20dB and a noise temperature as low as 10 K with a total power consumption of 1.2 mW. The low-power amplifiers can be used as first-stage IF amplifiers in a superconductor-insulatorsuperconductor (SIS) receiver, and are especially useful in focal plane arrays with large pixel count because of the merit of the total power consumption.
ALMA has already produced many impressive and scientifically compelling results. However, continuous technical upgrades and development are key for ALMA to continue to lead astronomical research through the 2020-2030 decade and beyond. The East Asia ALMA development program consists of the execution of short term projects, and the planning and initial studies for longer term developments that are essential for future upgrades. We present an overview of all these ongoing East Asia ALMA development projects and upgrade studies, which aim to maintain and even increase the outstanding scientific impact of ALMA in the near future and over the coming decades.
The ALMA telescope has been producing ground-breaking science since 2011, but it is mostly based on front-end and back-end technology from the 2000s. In order to keep ALMA competitive in the coming decade, timely updates are necessary in order to further improve the science output of the telescope. In NAOJ, we have been doing research leading to technological developments which aim to increase the field-of-view of the telescope, and the RF and instantaneous bandwidth for more efficient and accurate spectral surveys. In this contribution, we will describe the most important technical achievements by our group in recent years.
ALMA has been demonstrating its exceptional capabilities with unprecedented scientific results achieved over the past six years of operation. To keep ALMA as a leading-edge telescope, it is essential to continue technical upgrades and development of new potential. While our future development programs have already achieved remarkable technological breakthroughs at the level of front-end receivers, we are discussing the upgrades of the analog and digital backend and the correlator. We report the required concept design of the interferometric system focused on these sub-systems to realize new science use cases.
This paper summarizes the performance of all the 73 ALMA band 10 cartridges in terms of noise performance and/or optical efficiencies compared to the required ALMA specifications. In particular, the measured optical performance is compared with the results of novel statistical Monte Carlo analyses carried out before receiver production. Some of the technical difficulties encountered during production are briefly described. Finally, some of the first light results of the first receivers used in Chile are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.