The camera calibration for the intrinsic parameters such as the principal point and the principal distance is one of the most important techniques for the 3-D measurement applications based on the cameras' 2D images: the principal point is the intersection of optical axis of camera and image plane, and the principal distance is the distance between the center of lens and principal point. Though the techniques of camera parameter calibration have been intensively investigated by many researchers, the calibration errors were just examined through limited experiments and simulations and no more. Taking up the two-fiducial-plane camera calibration technique, this paper examined the calibration errors theoretically for various conditions such as the fiducial-plane translation, and the principal distances where the extraction errors of image coordinates of the fiducial points were considered as the source of the errors. The estimation error of F and P are theoretically formulized with the analytical equations, and the effectiveness of the formulas is confirmed by comparing the values by the theory with those by the simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.