Digital image interpolation using Gaussian radial basis functions has been implemented by several investigators, and promising results have been obtained; however, determining the basis function variance has been problematic. Here, adaptive Gaussian basis functions fit the mean vector and covariance matrix of a non-radial Gaussian function to each pixel and its neighbors, which enables edges and other image characteristics to be more effectively represented. The interpolation is constrained to reproduce the original image mean gray level, and the mean basis function variance is determined using the expected image smoothness for the increased resolution. Test outputs from the resulting Adaptive Gaussian Interpolation algorithm are presented and compared with classical interpolation techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.