KEYWORDS: Interfaces, Temperature metrology, Systems modeling, Signal processing, Charge-coupled devices, Sensors, Damage detection, Data acquisition, Dielectrics, Diagnostics, Bridges
In this study, the pre-stress force in pre-stressed concrete (PSC) girders is monitored via mountable PZT interface under varying temperature. Firstly, an impedance-based technique using mountable PZT interface is proposed for pre-stress-loss monitoring in tendon-anchorage systems. A cross correlation-based temperature-effect compensation algorithm using an effective frequency shift (EFS) of impedance signatures is visited. Secondly, lab-scale experiments are performed on a PSC girder instrumented with a mountable PZT interface at tendon-anchorage. A series of temperature variation and pre-stress-loss events are simulated for the lab-scale PSC girder. Thirdly, the feasibility of the mountable PZT interface for pre-stress-loss monitoring in tendon-anchorage is experimentally verified under constant temperature conditions. Finally, the PZT interface device is examined for pre-stress-loss monitoring under temperature changes to validate its applicability. The temperature effect on impedance signatures is compensated by minimizing cross-correlation deviation between impedance patterns of the mountable PZT interface.
In this study, an algorithm using image processing techniques is proposed to identify bolt-loosening in bolted connections of steel structures. Its basic concept is to identify rotation angles of nuts from a pictured image, and is mainly consisted of the following 3 steps: (1) taking a picture for a bolt joint, (2) segmenting the images for each nut by image processing techniques, and (3) identifying rotation angle of each nut and detecting bolt-loosening. By using the concept, an algorithm is designed for continuous monitoring and inspection of the bolt connections. As a key imageprocessing technique, Hough transform is used to identify rotation angles of nuts, and then bolt-loosening is detected by comparing the angles before and after bolt-loosening. Then the applicability of the proposed algorithm is evaluated by experimental tests for two lab-scaled models. A bolted joint model which consists of a splice plate and 8 sets of bolts and nuts with 2×4 array is used to simulate inspection of bridge connections, and a model which is consisted of a ring flange and 32 sets of bolt and nut is used to simulate continuous monitoring of bolted connections in wind turbine towers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.