Periodically patterning silicon with a subwavelength period enables flexible control of the propagation of light and sound in silicon photonic circuits. In this invited presentation, we will show our most recent demonstration of supercontinuum generation in the near-IR and mid-IR using suspended silicon waveguides. We will also discuss our recent results on subwavelength engineering of photons and phonons in suspended and non-suspended silicon optomechanical cavities
Integration of photonic circuits on silicon offers a unique opportunity to address the scaling of inter- and intra-chip communications in an energy-efficient and cost-effective manner. Mode-division multiplexing (MDM) is deemed as one of the most promising technologies to increase aggregated data bandwidth and avoid a communication capacity crunch. In this invited talk, we review our latest advances on integrated silicon mode multiplexers, including new topologies based on subwavelength grating (SWG) metamaterials for extended broadband operation and higher-order mode support. Specifically, we report on an ultra-broadband multiplexer based on a phase shifter and a multimode interference (MMI) coupler both engineered with subwavelength metamaterials. Experimental measurements of a complete multiplexer-demultiplexer link show losses lower than 2 dB and crosstalk below -17 dB over a bandwidth of 245 nm (1427 – 1672 nm).
Periodically patterning silicon with a subwavelength pitch opens new degrees of freedom to control the propagation of light and sound in silicon photonic circuits with unprecedented flexibility. In this invited presentation, we will show our most recent results on the use suspended silicon waveguides for supercontinuum generation in the near-IR and mid-IR. We will also discuss our recent demonstrations of subwavelength engineering of photons and phonons in suspended and non-suspended silicon optomechanical cavities
The Si transparency (1.1 μm – 8 μm wavelength) contains the strongest absorption features of a wide range of chemical and biological substances. However, the use of SOI in the mid-IR is hampered by the large absorption of the buried oxide (BOX) for wavelengths above 4 μm. Silicon membranes have garnered great interest for their unique capability to overcome the BOX limitation while leveraging the advantages of Si photonics. On the other hand, silicon is uniquely poised for the implementation of wideband mid-IR sources based on nonlinear frequency generation.
Promising supercontinuum and frequency comb generation have already been demonstrated in Si. Still, current implementations have a limited flexibility in the engineering of phase-matching conditions and dispersion, which complicates the shaping of the nonlinear spectrum. Patterning Si with features smaller than half of the wavelength (well within the capabilities of standard large-volume fabrication processes) has proven to be a simple and powerful tool to implement metamaterials with optimally engineered properties.
Here, we present the design of nanostructured silicon membrane waveguides with ultra-wideband flat anomalous dispersion in a wavelength span exceeding 5 µm. Our three-dimensional finite difference time domain (FDTD) calculations predict flat anomalous dispersion near 50 ps/km⋅nm between 2.5 µm and 8 µm wavelength. These results illustrate the potential of subwavelength metamaterial engineering to control chromatic dispersion in Si membrane waveguides. This is a promising step towards the implementation of wideband nonlinear sources in the mid-IR for silicon photonics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.