One of the most widespread all-optical photoacoustic imaging techniques is based on Fabry-Pérot cavities with a thin polymer spacer. However, the deposition process can lead to inhomogeneities in the thickness of this sensing layer. They can be compensated by precisely controlling the interrogation beam, to provide optimal sensitivity. This is commonly achieved with slowly tunable narrowband lasers, eventually limiting the acquisition speed. We propose instead to use a broadband amplified spontaneous emission source and a fast tunable acousto-optic filter to adjust the interrogation wavelength at each pixel within a few microseconds. This enables us to maximize the sensitivity of the optical interferometric ultrasound detection at each point of the Fabry-Perot cavity. We experimentally show that this greatly enhances the detection bandwidth of the ultrasound sensors. We demonstrate the validity of this approach by performing photoacoustic imaging with a highly inhomogeneous sensor.
The resolution of photoacoustic imaging of blood vasculature is limited at depth by the acoustic diffraction limit. In this work, we propose to exploit the fluctuations caused by flowing absorbers (such as red blood cells in blood vessels) to perform photoacoustic imaging beyond the acoustic diffraction limit: following the super-resolution optical fluctuation imaging (SOFI) method, we analyze the n-th order statistics from the temporal photoacoustic fluctuations induced by flowing particles.
We performed a proof-of-concept experiment in a 5-channel microfluidic silicon-based circuit flown with a suspension of RBC-mimicking 10 µm red-tainted polymer spheres (Microparticles, GmbH, Berlin, Germany). The sample was illuminated with a 5 ns pulsed ND-YAG laser (532 nm, Innolas, Krailling, Germany) with a fluence of 3 mJ/cm^2 and imaged at a 20 Hz rate using a L22-8v probe (128 elements, Verasonics, Redmond, WA, USA) coupled to a Verasonics Vantage 256 ultrasound scanner. Whereas the resolution of conventional photoacoustic imaging was too low to resolve individual channels, the nth order statistical analysis of the photoacoustic fluctuations provided images with a resolution enhancement scaling as n^{1/2}, in agreement with the SOFI theory and with numerical simulations. As opposed to our previous work which exploited speckle-based photoacoustic fluctuations to increase the resolution, the approach proposed here based on sample fluctuations do not require coherent light and can be readily applied to conventional photoacoustic imaging setup. Furthermore, in order to discard the oscillatory behavior of the photoacoustic point-spread-function, we extended in this work the SOFI theory to complex-valued photoacoustic images.
In deep photoacoustic imaging, resolution is inherently limited by acoustic diffraction, and ultrasonic frequencies cannot be arbitrarily increased because of attenuation in tissue. Here we report on the use of multiple speckle illumination to perform super resolution photoacoustic imaging. We show that the analysis of speckle-induced second-order fluctuations of the photoacoustic signal combined with deconvolution enables to resolve optically absorbing structures below the acoustic diffraction limit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.