XML data is widely used in the information exchange field of Internet, and XML document data clustering is the hot research topic. In the XML document clustering process, measure differences between two XML documents is time costly, and impact the efficiency of XML document clustering. This paper proposed an XML documents clustering method based on frequent patterns of XML document dataset, first proposed a coding tree structure for encoding the XML document, and translate frequent pattern mining from XML documents into frequent pattern mining from string. Further, using the cosine similarity calculation method and cohesive hierarchical clustering method for XML document dataset by frequent patterns. Because of frequent patterns are subsets of the original XML document data, so the time consumption of XML document similarity measure is reduced. The experiment runs on synthetic dataset and the real datasets, the experimental result shows that our method is efficient.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.