KEYWORDS: Monte Carlo methods, Diffuse reflectance spectroscopy, In vivo imaging, Tissues, Optical imaging, Machine learning, Hyperspectral imaging, Functional imaging, Evolutionary algorithms, Data analysis
Simulations are indispensable in the field of biomedical optical imaging, particularly in functional imaging. Given the recent rise of artificial intelligence and the lack of labeled in vivo data, synthetic data is not only important for the validation of algorithms but also crucial for training machine learning methods. To support research based on synthetic data, we present a new framework for assessing the quality of synthetic spectral data. Experiments with more than 10,000 hyperspectral in vivo images obtained from multiple species and various organ classes indicate that our framework could become an important tool for researchers working with simulations.
Photoacoustics Imaging is an emerging imaging modality enabling the recovery of functional tissue parameters such as blood oxygenation. However, quantifying these still remains challenging mainly due to the non-linear influence of the light fluence which makes the underlying inverse problem ill-posed. We tackle this gap with invertible neural networks and present a novel approach to quantifying uncertainties related to reconstructing physiological parameters, such as oxygenation. According to in silico experiments, blood oxygenation prediction with invertible neural networks combined with an interactive visualization could serve as a powerful method to investigate the effect of spectral coloring on blood oxygenation prediction tasks.
One of the major applications of multispectral photoacoustic imaging is the recovery of functional tissue properties with the goal of distinguishing different tissue classes. In this work, we tackle this challenge by employing a deep learning-based algorithm called learned spectral decoloring for quantitative photoacoustic imaging. With the combination of tissue classification, sO2 estimation, and uncertainty quantification, powerful analyses and visualizations of multispectral photoacoustic images can be created. Consequently, these could be valuable tools for the clinical translation of photoacoustic imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.