In the paper the planar waveguide based on SU-8 polymer were made on 2μm of silica (SiO2) on silicon (Si) substrates in order to obtain base for broadband interferometer. Analysis and calculation of sensitivity for single mode broadband differential interferometer were performed. Paper presents preliminary tests and analysis of such structures. Dilution of SU-8 solution for obtaining thin layer (below 500 nm) followed by elipsometric measurements is presented.
In this paper we propose low cost and easy in development fully working dye-sensitized solar cell module made with use of a different sensitizing dyes (various anthocyanins and P3HT) for increasing the absorption spectrum, transparent conducting substrates (vaccum spattered chromium and gold), nanometer sized TiO2 film, iodide and methyl viologen dichloride based electrolyte, and a counter electrode (vaccum spattered platinum or carbon). Moreover, some of the different technologies and optimization manufacturing processes were elaborated for energy efficiency increase and were presented in this paper.
In the paper the planar waveguide based on SU-8 polymer were made on different substrates. As polymer layer Gerseltec SU8 GM1040 and Microchem SU8 2000.5 were used. By using Gerseltec SU8 GM1040 we obtained layer with thickness 950 nm which gave us planar waveguide bimodal structure for λ=633nm. By using Microchem SU8 2000.5 we obtained layer thickness 450 nm which gave us single mode waveguide structure for λ=633nm. As substrate we used 2μm of SiO2 on Si and standard microscope glass (soda-lime glass). Additionally the authors performed measurements for characterization of optical and physical properties of obtained layers. We measured layer thickness by Atomic Force Microscope (AFM) and by ellipsometer. Ellipsometry measurement also gave us refractive indices of waveguide layer and substrate. We also performed measurement of effective refractive index and attenuation of waveguide layers. Additionally we performed SEM measurement for checking layers adhesion.
The paper presents analysis of light intensity distribution and sensitivity in differential interferometer based on bimodal polymer waveguide. Key part is analysis of optimal waveguide layer thickness in structure SiO2/SU-8/H2O for maximum bulk refractive index sensitivity. The paper presents new approach to detecting phase difference between modes through registrations only part of energy propagating in the waveguide. Additionally in this paper the analysis of changes in light distribution when energy in modes is not equal were performed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.