We present a novel 3D display that can show any 3D contents in free space using laser-plasma scanning in the air. The
laser-plasma technology can generate a point illumination at an arbitrary position in the free space. By scanning the
position of the illumination, we can display a set of point illuminations in the space, which realizes 3D display in the
space. This 3D display has been already presented in Emerging Technology of SIGGRAPH2006, which is the basic platform of our 3D display project. In this presentation, we would like to introduce history of the development of the laser-plasma scanning 3D display, and then describe recent development of the 3D contents analysis and processing technology for realizing an innovative media presentation in a free 3D space. The one of recent development is performed to give preferred 3D contents data to the 3D display in a very flexible manner. This means that we have a platform to develop an interactive 3D contents presentation system using the 3D display, such as an interactive art presentation using the 3D display. We would also like to present the future plan of this 3D display research project.
Recently, bicycles are widely used as a convenient transportation tool. But from a viewpoint of wide use for the future aging society, it is problem to pedal on rider's own. As well known, power assistance bicycle has already been used. The power assistance bicycle helps the elderly people or the people who has weak legs to expand their field. However, existing power assistance bicycle doesn't take running environment and rider's condition into account. The new control algorithm for power assistance bicycle is proposed in this paper. Human input and running friction are estimated as a disturbance torque with a disturbance observer. By using high pass filter (HPF), human input is separated from running friction. This method realizes power assistance bicycle without torque sensor. Disturbance observer compensates running friction. Compliance control is applied to make the bicycle have desired compliance. The effectiveness of this control algorithm is verified by numerical and experimental results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.