This paper describes Eastman Kodak Company's commercialization efforts to develop new materials and formulations for monochrome and full-color displays. We have found a new set of materials, and combinations thereof, that improve luminance efficiency, lower drive voltage, and increase the operational stability of OLED devices. We report the developments in formulations for blue and white OLEDs based on fluorescent dopants that provide lifetimes exceeding 10,000 hours for blue, and 50,000 hours for white OLEDs at a starting luminance level of 1000 cd/m2. A red formulation, based on a fluorescent dopant using a new host, is shown to give a record luminance efficiency of 7.8 cd/A combined with excellent color and lifetime. We have found a phosphorescent red-emitting device using a novel host material that gives an excellent efficiency of 9.6 lm/W. Further progress has been made in a new electron-transport layer to reduce display drive voltage, and thus reduce power consumption, while simultaneously increasing operational stability. We have compared this performance with currently available systems.
We have developed novel formulations through a combination of new materials and a co-dopant/co-host systems approach. These novel formulations offer significant improvements in efficiency, lifetime, and color, which are suitable for fabrication of full-color OLED displays. In this report, we will review the progress made at Kodak and compare it with currently available systems.
Eastman Kodak Company and SANYO Electric Co., Ltd. recently demonstrated a 15" full-color, organic light-emitting diode display (OLED) using a high-efficiency white emitter combined with a color-filter array. Although useful for display applications, white emission from organic structures is also under consideration for
other applications, such as solid-state lighting, where high efficiency and good color rendition are important. By incorporating adjacent blue and orange emitting layers in a multi-layer structure, highly efficient, stable white emission has been attained. With suitable host and dopant combinations, a luminance yield of 20 cd/A and efficiency of 8 lm/W have been achieved at a drive voltage of less than 8 volts and luminance level of 1000 cd/m2. The estimated external efficiency of this device is 6.3% and a high level of operational stability is observed. To our knowledge, this is the highest performance reported so far for white organic electroluminescent devices. We will review white OLED technology and discuss the fabrication and operating characteristics of these
devices.
KEYWORDS: Computer programming, Modulation, Molybdenum, Microscopes, Magnetism, Temperature metrology, Anisotropy, High power lasers, Signal generators, Standards development
Two media configurations are identified as suitable for direct overwrite, by light intensity modulation, within a fixed bit-cell encoding scheme. Unlike previously proposed media of comparable complexity, these materials do not require a second (initialization) magnet within the drive. Key to successful operation is the use of small marks and precise synchronization of old and new marks inherent within fixed bit-cell encoding. Latitudes in alignment and power for direct overwrite are assessed.
Conference Committee Involvement (3)
Organic Light Emitting Materials and Devices XI
27 August 2007 | San Diego, California, United States
Organic Light Emitting Materials and Devices X
13 August 2006 | San Diego, California, United States
Organic Light-Emitting Materials and Devices IX
31 July 2005 | San Diego, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.