In order to tap the full potential of optical metrology, a comprehensive knowledge of the measuring system properties is of particular importance. The surface characteristics, the sensor's orientation towards the device under test and even the measuring frequency affect the result. Understanding the function of particular components of the device under test must also be seen as a basic prerequisite for the definition of the inspection features which will make up the inspection plan. The problems arising from the complex application of optical metrology, mainly in machine integration and embedment into existing quality management, will be the central theme of two research projects. An emphases of the technical development will be on the integration of optical metrology into machine tools and production-related coordinate measuring machines while ensuring consistency of data and on the conceptual design of software interfaces for user-friendly application of optical metrology. For that purpose, database-supported automatic generation of measurement and digitization procedures from CAD data will be implemented. This work will centre around the definition of variable sensor parameters and the allocation and configuration of these parameters according to the measurement task at hand. The technological basis for these studies are a conoscopic sensor mounted on a coordinate measuring machine and a scanning triangulation sensor integrated into a five axis machine tool.
By China's entry into the WTO, Chinese as well as German companies are facing the question, how to minimize the risk of unfamiliar cooperation partners when developing products. The rise of customer demands concerning quality, product diversity and the reduction of expenses require flexibility and efficiency with reliable component suppliers. In order to build and strengthen sino-german cooperations, a manufacturing control using homogenized and efficient measures to assure high quality is of vital importance. Lack of unifications may cause identical measurements conducted at subcontractors or customers to be carried out with different measurement processes which leads to incomparable results. Rapidly growing company cooperations and simultaneously decreasing of manufacturing scope cause substantial difficulties when coordinating joint quality control activities. "ProSens," a sino-german project consortium consisting of industrial users, technology producers and research institutes, aims at improving selected production processes by:
Creation of a homogeneous quality awareness in sino-german cooperations.
Sensitization for process accompanying metrology at an early stage of product development.
Increase of the process performance by the use of integrated metrology.
Reduction of production time and cost.
Unification of quality control of complex products by means of efficient measurement strategies and CAD-based inspection planning.
Forging and sheet metal forming tools are subject to strong, partial wear in use. On the one hand wear-protection layers are applied before use, and on the other hand worn tools are repaired by manual build-up welding after use. At present the repair of such tools is carried out in separate work processes with a small degree of automation and a high proportion of manual activity. This leads to long running times and potential sources of error. Our approach to solve these problems is to develop a repair cell which will facilitate automated repairs, beginning with measurement of the worn tool areas through to the repaired, fully operational tool. This paper will describe the overall concept of this repair cell with a special focus on optical metrology. Challenges of integration and demands for different sensor types are presented as well as the specified interfaces between different processing stages during manufacturing.
The advantage of optical 3D measurement systems like triangulation based fringe projection systems compared with tactile working systems is their contactless and fast 3D surface data acquisition. The results in the form of point clouds can be processed regarding a mathematical surface description for CAD data generation. In many cases the optical 3D surface data acquisition of complex workpieces cannot be achieved in one measuring process so that it is necessary to merge different measuring fields. This approach is essential when the object is larger than the measuring range or the object cannot be measured in one measuring process in consequence of reflections or shadings. According to these problems a fringe projection system was integrated in a coordinate measuring machine with 5 axes (3 linear axes and 2 rotation axes). By using these axes, every region of the workpiece can be reached with the optical 3D sensor for digitalization. To get the complete point cloud of the object surface the different measuring fields must be transformed in one coordinate system by using the relative axes positions of the coordinate measuring machine. Results concerning Reverse Engineering applications and considerations of the measurement uncertainty of the scanning fringe projection system are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.