KEYWORDS: Video, Local area networks, Surgery, Cameras, Digital video discs, LCDs, Optical fibers, Picture Archiving and Communication System, Navigation systems, Control systems
Purpose: build 20 ORs equipped with independent video acquisition and broadcasting systems and a powerful LAN connectivity. Methods: a digital PC controlled video matrix has been installed in each OR. The LAN connectivity has been developed to grant data entering the OR and high speed connectivity to a server and to broadcasting devices. Video signals are broadcasted within the OR. Fixed inputs and five additional video inputs have been placed in the OR. Images can be stored locally on a high capacity HDD and a DVD recorder. Images can be also stored in a central archive for future acquisition and reference. Ethernet plugs have been placed within the OR to acquire images and data from the Hospital LAN; the OR is connected to the server/archive using a dedicated optical fiber. Results: 20 independent digital ORs have been built. Each OR is "self contained" and images can be digitally managed and broadcasted. Security issues concerning both image visualization and electrical safety have been fulfilled and each OR is fully integrated in the Hospital LAN. Conclusions: Digital ORs were fully implemented, they fulfill surgeons needs in terms of video acquisition and distribution and grant high quality video for each kind of surgery in a major hospital.
We have developed a software, which allows to do non conventional percent quantitative analysis on scintigraphic polar map obtained from conventional processing of gated-SPECT acquisitions. Polar maps are 8 bit images of perfusion, motion, ejection fraction (EF) and thickening, of the heart.
The software is written in Matlab, analyses the whole polar map and four ROIs corresponding to the theoretical LAD, LCX, RCA territories (perfused by these arteries) and extra-ROIs region. An intensity segmentation is performed. The area corresponding to pixels lower and higher than a varying cut-off are calculated on the whole image and for each ROI. The software calculates an intensity-area histogram, which is the analogous of the Dose-Volume Histogram used in radiation therapy: in this case, the histogram has the meaning of a Perfusion- or a Motion-Volume histogram. Then, the software applies the Lyman-Wolbarst algorithm, to calculate the area equivalent histogram reduction (e.g. the perfused area in the hypothesis that all pixels are perfused at 100%.). The makes a direct comparison between two different polar maps by choice. The comparison between the numerical quantification of motion and perfusion maps, allows the physicians to get a clinical evaluation of the stunned myocardium.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.