A major issue in electron tomography is the misalignment of the projections contributing to the reconstruction. The current alignment techniques currently use fiducial markers such as gold particles. When the use of markers is not possible, the accurate alignment of the projections is a challenge. We describe a new method for the alignment of transmission electron microscopy (TEM) images series without the need of fiducial markers. The proposed approach is composed of two steps. The first step consists of an initial alignment process, which relies on the minimization of a cost function based on robust statistics measuring the similarity of a projection to its previous projections in the series. It reduces strong shifts resulting from the acquisition between successive projections. The second step aligns the projections finely. The issue is formalized as an inverse problem. The pre registered projections are used to initialize an iterative alignment-refinement process which alternates between (i) volume reconstructions and (ii) registrations of measured projections onto simulated projections computed from the volume reconstructed in (i). The accuracy of our method is very satisfying; we illustrate it on simulated data and real projections of different zeolite supports catalyst.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.