Composite materials play important roles in multifunctional applications, and thus, the diagnosis of damage patterns in composite materials becomes crucial to avoid critical events" such as structural or functional failures. The impact of an individual damage in composite materials has been extensively studied, however, the interaction of defects/cracks, which leads to critical fracture paths, has not been understood well. In this paper, we develop a Bayesian estimation based statistical analysis technique that estimates the damage pattern of a composite material, in particular, the relative positions of defects in the material, by measuring its through-thickness dielectric properties. We first explain the fundamental dielectric principle that leads to the detection of defect patterns. A capacitance model is then built to measure the material permittivity, and the relationship between the dielectric permittivity and relative positions are found using COMSOL Multiphysics. The interaction effects between defects observed in the simulation are interpreted using the fundamental dielectric principle. A Bayesian estimation based statistical analysis model is then developed to estimate the relative positions of defects in composite materials from the measured global dielectric properties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.